Advertisement

Theoretical and Experimental Chemistry

, Volume 55, Issue 4, pp 258–265 | Cite as

Production of Methyl Acetate from Methanol in Vapor-Phase Tandem Reactions on Supported Copper–Nickel Catalysts

  • A. Yu. KapranEmail author
  • V. I. Chedryk
  • L. M. Alekseenko
  • P. S. Yaremov
  • S. M. Orlyk
Article
  • 1 Downloads

A method is proposed for the production of methyl acetate by combining vapor-phase reactions of methanol decomposition on a CuO-NiO-ZnO/Al2O3/cordierite catalyst and subsequent carbonylation on nickel–copper catalysts supported on BAU-A activated charcoal (AC) or cordierite. A yield of 21% methyl acetate was obtained on the catalyst containing 11% NiCl2 and 32% CuCl2 on AC.

Key words

methanol methyl acetate tandem reactions decomposition and carbonylation cupric chloride nickel chloride activated charcoal cordierite 

References

  1. 1.
    G. J. Sunley and D. J. Watson, Catal. Today, 58, 293-307 (2000).CrossRefGoogle Scholar
  2. 2.
    N. Yoneda, S. Kusano, M. Yasui, et al., Appl. Catal. A, 221, 253-265 (2001).CrossRefGoogle Scholar
  3. 3.
    A. Haynes, Adv. Catal., 53, 1-45 (2010).Google Scholar
  4. 4.
    Z. Martinez-Ramirez, G. A. Flores-Escamilla, G. S. Berumen-España, et al., Appl. Catal. A, 502, 254-261 (2015).CrossRefGoogle Scholar
  5. 5.
    N. Laosiripojana and S. Assabumrungrat, Chem. Eng. Sci., 61, 2540-2549 (2006).CrossRefGoogle Scholar
  6. 6.
    K. Fujimoto, S. Bischoff, K. Omata, and H. Yagita, J. Catal., 133, 370-382 (1992).CrossRefGoogle Scholar
  7. 7.
    G. Ormsby, J. Hargreaves, and E. J. Ditzel, Catal. Commun., 10, 1292-1295 (2009).CrossRefGoogle Scholar
  8. 8.
    A. Yu. Kapran, S. N. Orlyk, and S. O. Soloviev, React. Kinet. Mech. Catal., 114, 135-145 (2015).CrossRefGoogle Scholar
  9. 9.
    F. Peng and F. Xiao-Bao, Catal. Today, 93-95, 451-455 (2004).CrossRefGoogle Scholar
  10. 10.
    S. T. Gulati, Structured Catalysts and Reactors, A. Cybulski and J. A. Moulijn (eds.), CRC Press, Boca Raton-London-New York (2006).Google Scholar
  11. 11.
    E. P. Barrett, L. G. Joyner, and P. P. Halenda, J. Am. Chem. Soc., 73, 373-380 (1951).CrossRefGoogle Scholar
  12. 12.
    G. Horvath and K. Kawazoe, J. Chem. Eng. Jpn., 16, 470-475 (1983).CrossRefGoogle Scholar
  13. 13.
    S. G. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity, Academic Press, New York (1982).Google Scholar
  14. 14.
    A. S. Merenov, A. Nelson, and M. A. Abraham, Catal. Today, 55, 91-101 (2000).CrossRefGoogle Scholar
  15. 15.
    Chemist’s Handbook 21. Chemistry and Chemical Technology. Kinetic Diameters of Atoms and Molecules [in Russian], https://chem21.info/info/133332/.
  16. 16.
    B. Ellis, M. J. Howard, R. W. Joyner, et al., Stud. Surf. Sci. Catal., 101, 771-779 (1996).CrossRefGoogle Scholar
  17. 17.
    F. Peng, J. Natural Gas Chem., 12, 31-36 (2003).Google Scholar
  18. 18.
    T. Blasco, M. Boronat, P. Concepción, et al., Angew. Chem. Int. Ed., 46, 3938-3941 (2007).CrossRefGoogle Scholar
  19. 19.
    T. L. Wind, H. Falsig, J. Schested, et al., J. Catal., 342, 105-116 (2016).CrossRefGoogle Scholar
  20. 20.
    D. R. Stull, E. F. Westrum, Jr., and G. C. Sinke, The Chemical Thermodynamics of Organic Compounds, John Wiley and Sons, New York (1969).Google Scholar
  21. 21.
    K. Omata, K. Fujimoto, T. Shikada, and H. Tominaga, Ind. Eng. Chem. Res., 27, 2211-2213 (1988).CrossRefGoogle Scholar
  22. 22.
    A. Yu. Kapran, V. S. Borisevich, L. M. Alekseenko, et al., Teor. Éksp. Khim., 52, No. 4, 233-238 (2016). [Theor. Exp. Chem., 52, No. 4, 233-239 (2016) (English translation).]Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. Yu. Kapran
    • 1
    Email author
  • V. I. Chedryk
    • 1
  • L. M. Alekseenko
    • 1
  • P. S. Yaremov
    • 1
  • S. M. Orlyk
    • 1
  1. 1.L. V. Pysarzhevsky Institute of Physical Chemistry, National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations