Advertisement

Theoretical and Experimental Chemistry

, Volume 55, Issue 4, pp 246–249 | Cite as

Relation of Fractal Characteristics with Structural Parameters of Nanosized ZrO2 Determined by Various Methods

  • A. I. TrypolskyiEmail author
  • O. Z. Didenko
  • P. E. Strizhak
Article
  • 9 Downloads

The fractal dimensions of nanodispersed zirconia determined by the BET and SAXS methods are compared. The fractal dimensions were shown to depend on the characteristic dimensions of the surface areas determined by different methods. A method for calculating the surface fractal dimension using the difference between the specific surface obtained by the BET and SAXS methods is proposed.

Key words

nanoparticles zirconia fractal dimension small angle X-ray scattering 

References

  1. 1.
    D. Avnir, The Fractal Approach to Heterogeneous Chemistry, John Wiley and Sons, New York (1989).Google Scholar
  2. 2.
    E. Feder, Fractals, Springer, Berlin (1988).CrossRefGoogle Scholar
  3. 3.
    W. G. Rothschild, Fractals in Chemistry, John Wiley and Sons, New York (1998).Google Scholar
  4. 4.
    J. C. Russ, Fractal Surfaces, Plenum Press, New York (1994).CrossRefGoogle Scholar
  5. 5.
    V. I. Roldugin, Usp. Fiz. Nauk, 72, No. 11, 1027-1054 (2003).Google Scholar
  6. 6.
    C. K. Lee and S. L. Lee, Heterog. Chem. Rev., 3, 269-302 (1996).CrossRefGoogle Scholar
  7. 7.
    F. Ehrburger-Dolle, Langmuir, 15, No. 18, 6004-6015 (1999).CrossRefGoogle Scholar
  8. 8.
    J. K. Garbacz and A. Kopkowski, Ads. Sci. Technol., 15, No. 9, 695-705 (1997).CrossRefGoogle Scholar
  9. 9.
    P. Pfeifer and K.-Y. Liu, Stud. Surf. Sci. Catal., 104, 625-677 (1997).CrossRefGoogle Scholar
  10. 10.
    P. A. Gauden, G. Rychlicki, A. P. Terzyk, and R. Wojsz, J. Therm. Anal., 54, No. 1, 351-361 (1998).CrossRefGoogle Scholar
  11. 11.
    W. Rudzinski, S.-L. Lee, T. Panczyk, and Ch.-Ch. S. Yan, J. Phys. Chem. B, 105, No. 44, 10847-10856 (2001).CrossRefGoogle Scholar
  12. 12.
    P. E. Strizhak, A. I. Tripol’skii, T. N. Gurnik, et al., Teor. Éksp. Khim., 44, No. 3, 138-143 (2008). [Theor. Exp. Chem., 44, No. 3, 144-149 (2008) (English translation).]Google Scholar
  13. 13.
    A. I. Tripol’skii, T. N. Gurnik, and P. E. Strizhak, Teor. Éksp. Khim., 44, No. 6, 338-342 (2008). [Theor. Exp. Chem., 44, No. 6, 345-350 (2008) (English translation).]Google Scholar
  14. 14.
    T. E. Konstantinova, I. A. Danilenko, V. V. Tokii, and V. A. Glazunova, Nauk. Innovats., 1, No. 3, 76-87 (2005).CrossRefGoogle Scholar
  15. 15.
    M. Jaroniec, Langmuir, 11, No. 6, 2316-2317 (1995).CrossRefGoogle Scholar
  16. 16.
    A. V. Neimark, M. Hanson, and K. K. Unger, J. Phys. Chem., 97, No. 22, 6011-6015 (1993).CrossRefGoogle Scholar
  17. 17.
    P. Pfeifer and M. Obert, The Fractal Approach to Heterogeneous Chemistry,D. Avnir (ed.), Wiley, New York (1989).Google Scholar
  18. 18.
    P. Pfeifer and D. Avnir, J. Chem. Phys., 79, No. 7, 3558-3565 (1983).CrossRefGoogle Scholar
  19. 19.
    D. Avnir, D. Farin, and P. Pfeifer, Nature, 308, 261-263 (1984).CrossRefGoogle Scholar
  20. 20.
    B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman and Co., New York (1983).CrossRefGoogle Scholar
  21. 21.
    D. Avnir, J. Am. Chem. Soc., 109, No. 10, 2931-2938 (1987).CrossRefGoogle Scholar
  22. 22.
    D. R. Vollet, W. A. T. de Sousa, D. A. Donatti, and A. Ibañez Ruiz, J. Non-Cryst. Solids, 353, No. 2, 143-150 (2007).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. I. Trypolskyi
    • 1
    Email author
  • O. Z. Didenko
    • 1
  • P. E. Strizhak
    • 1
  1. 1.L. V. Pysarzhevsky Institute of Physical Chemistry, National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations