Advertisement

Theoretical and Experimental Chemistry

, Volume 55, Issue 4, pp 232–239 | Cite as

Polarization Effects in Organic Dipole Photomotors

  • M. L. DekhtyarEmail author
  • V. M. Rozenbaum
  • L. I. Trakhtenberg
Article
  • 16 Downloads

Brownian dipole photomotors derived from betaine and merocyanine dyes are examined. With a specific type of molecular photoexcitation and a specific relationship of the dipole moments of the ground and excited states, directed motion of the photomotor becomes symmetry-forbidden; the forbiddenness can be removed by molecular polarization effects. These effects become the predominant factor governing the direction of the motion and average velocity of photomotors, which can be an order of magnitude greater than for already known Brownian motors. These findings suggest guidelines for the molecular design of dipole photomotors with desired properties.

Key words

Brownian dipole photomotor intraionic organic compounds ground- and excited-state dipole moments symmetry forbiddenness polarization effects 

Notes

This work was carried out with the partial financial support of the Russian Basic Research Fund (Grant Nos. 18-57-00003-Bel_a and 18-29-02012-mk).

References

  1. 1.
    E. R. Kay and D. A. Leigh, Angew. Chem. Int. Ed., 54, No. 35, 10080-10088 (2015).CrossRefGoogle Scholar
  2. 2.
    R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. 1, Addison-Wesley, Reading, MA (1963).Google Scholar
  3. 3.
    J. H. Quastel, Proc. Roy. Soc. B, 163, No. 991, 169-196 (1965).CrossRefGoogle Scholar
  4. 4.
    F. Jülicher, A. Ajdari, and J. Prost, Rev. Mod. Phys., 69, No. 4, 1269-1281 (1997).CrossRefGoogle Scholar
  5. 5.
    R. D. Astumian, Science, 276, No. 5314, 917-922 (1997).CrossRefGoogle Scholar
  6. 6.
    K. E. Drexler, Nanosystems: Molecular Machinery, Manufacturing and Computation, Wiley, New York (1992).Google Scholar
  7. 7.
    G. R. Ivanitskii, A. B. Medvinskii, A. A. Deev, and M. A. Tsyganov, Usp. Fiz. Nauk, 168, No. 11, 931-956 (1998).CrossRefGoogle Scholar
  8. 8.
    P. Reimann, Phys. Rep., 361, Nos. 2-4, 57-265 (2002).CrossRefGoogle Scholar
  9. 9.
    E. R. Kay, D. A. Leigh, and F. Zerbetto, Angew. Chem. Int. Ed., 46, Nos. 1/2, 72-191 (2007).Google Scholar
  10. 10.
    P. Hänggi and F. Marchesoni, Rev. Mod. Phys., 81, No. 1, 387-442 (2009).CrossRefGoogle Scholar
  11. 11.
    V. M. Rozenbaum, I. V. Shapochkina, and L. I. Trakhtenberg, Usp. Fiz. Nauk, 189, No. 5, 529-543 (2019).CrossRefGoogle Scholar
  12. 12.
    M. L. Dekhtyar, A. A. Ishchenko, and V. M. Rozenbaum, J. Phys. Chem. B, 110, No. 41, 20111-20114 (2006).CrossRefGoogle Scholar
  13. 13.
    Z. Pawlowska, A. Lietard, S. Aloïse, et al., Phys. Chem. Chem. Phys, 13, No. 29, 13185-13195 (2011).CrossRefGoogle Scholar
  14. 14.
    S. L. Bondarev, S. A. Tikhomirov, V. N. Knyukshto, et al., J. Luminescence, 124, No. 1, 178-186 (2007).CrossRefGoogle Scholar
  15. 15.
    A. V. Kulinich, N. A. Derevyanko, E. K. Mikitenko, and A. A. Ishchenko, J. Phys. Org. Chem., 24, No. 8, 732-742 (2011).CrossRefGoogle Scholar
  16. 16.
    S. Denisov, S. Flach, and P. Hänggi, Phys. Rep., 538, No. 3, 77-120 (2014).CrossRefGoogle Scholar
  17. 17.
    D. Cubero and F. Renzoni, Phys. Rev. Lett., 116, No. 1, 010602-6 (2016).CrossRefGoogle Scholar
  18. 18.
    V. M. Rozenbaum, I. V. Shapochkina, Y. Teranishi, and L. I. Trakhtenberg, Pis’ma ZhÉTF, 107, No. 8, 525-531 (2018).Google Scholar
  19. 19.
    V. M. Rozenbaum, M. L. Dekhtyar, S. H. Lin, and L. I. Trakhtenberg, J. Chem. Phys., 145, No. 6, 064110-12 (2016).CrossRefGoogle Scholar
  20. 20.
    V. M. Rozenbaum, Pis’ma ZhÉTF, 88, No. 5, 391-395 (2008).Google Scholar
  21. 21.
    Ampac 6.0 and Ampac 6.55, Semichem, Inc., Shawnee, KS (1997).Google Scholar
  22. 22.
    J. Abe, Y. Nemoto, Y. Nagase, and Y. Shirai, Chem. Phys. Lett., 261, Nos. 1/2, 18-22 (1996).CrossRefGoogle Scholar
  23. 23.
    R. D. Astumian and M. Bier, Phys. Rev. Lett., 72, No. 11, 1766-1769 (1994).CrossRefGoogle Scholar
  24. 24.
    M. L. Dekhtyar and V. M. Rozenbaum, J. Chem. Phys., 134, No. 4, 044136-4 (2011).CrossRefGoogle Scholar
  25. 25.
    M. L. Dekhtyar and V. M. Rozenbaum, J. Chem. Phys., 137, No. 12, 124306-6 (2012).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. L. Dekhtyar
    • 1
    Email author
  • V. M. Rozenbaum
    • 2
  • L. I. Trakhtenberg
    • 3
  1. 1.Institute of Organic Chemistry, National Academy of Sciences of UkraineKyivUkraine
  2. 2.O. O. Chuiko Institute of Surface Chemistry, National Academy of Sciences of UkraineKyivUkraine
  3. 3.Lomonosov Moscow State UniversityMoscowRussian Federation

Personalised recommendations