Advertisement

Photocatalytic Selective Oxidation of Organic Compounds in Graphitic Carbon Nitride Systems: A Review

  • A. L. StroyukEmail author
  • A. E. Raevskaya
  • S. Ya. Kuchmy
Article
  • 20 Downloads

Recent work is reviewed concerning photocatalytic systems derived from graphitic carbon nitride (GCN) for the selective oxidation of various organic compounds including saturated and unsaturated hydrocarbons, alcohols, and organic sulfides. Examples are given for oxidative coupling of a series of organic compounds with the formation of carbon–nitrogen and carbon–carbon bonds as well as cyclization. The properties of various GCN samples were examined, including bulk, mesoporous, layered, and individual materials as well as samples modified with organic compounds, samples doped with metals and nonmetals, and GCN-derived composite materials. The outlook for future research in this field is given at the conclusion.

Key words

graphitic carbon nitride organic compounds photocatalysis oxidation oxidative coupling cyclization reactions 

References

  1. 1.
    X. Wang, K. Maeda, A. Thomas, et al., Nat. Mater., 8, No. 1, 76-80 (2009).CrossRefPubMedGoogle Scholar
  2. 2.
    X. Chen, Y. S. Jun, K. Takanabe, et al., Chem. Mater., 21, No. 18, 4093-4095 (2009).CrossRefGoogle Scholar
  3. 3.
    X. Wang, Maeda, X. Chen, et al., J. Am. Chem. Soc., 131, No. 5, 1680-1681 (2009).CrossRefPubMedGoogle Scholar
  4. 4.
    K. Maeda, X. Wang, Y. Nishihara, et al., J. Phys. Chem. C, 113, No. 12, 4940-4947 (2009).CrossRefGoogle Scholar
  5. 5.
    A. Thomas, A. Fischer, F. Goettmann, et al., J. Mater. Chem., 18, No. 41, 4893-4908 (2008).CrossRefGoogle Scholar
  6. 6.
    J. Zhu, P. Xiao, and S. A. C. Carabineiro, ACS Appl. Mater. Interfaces, 6, No. 19, 16449-16465 (2014).CrossRefPubMedGoogle Scholar
  7. 7.
    Yuyang Kang, Yongqiang Yang, Li-Chang Yin, et al., Adv. Mater., 27, No. 31, 4572-4577 (2015).CrossRefPubMedGoogle Scholar
  8. 8.
    Jiuqing Wen, Jun Xie, Xiaobo Chen, and Xin Li, Appl. Surf. Sci., 391, 72-123 (2017).CrossRefGoogle Scholar
  9. 9.
    A. L. Stroyuk, A. E. Raevskaya, and S. Ya. Kuchmy, Teor. Éksp. Khim., 54, No. 1, 3-32 (2018). [Theor. Exp. Chem., 54, No. 1, 1-35 (2018) (English translation).]Google Scholar
  10. 10.
    X. Wang, S. Blechert, and M. Antonietti, ACS Catal., 2, No. 8, 1596-1606 (2012).CrossRefGoogle Scholar
  11. 11.
    J. Liu, H. Wang, and M. Antonietti, Chem. Soc. Rev., 45, No. 8, 2308-2326 (2016).CrossRefPubMedGoogle Scholar
  12. 12.
    D. Huang, X. Yan, M. Yan, et al., ACS Appl. Mater. Interfaces, 10, No. 25, 21035-21055 (2018).CrossRefPubMedGoogle Scholar
  13. 13.
    J. Zhang, Y. Chen, and X. Wang, Energy Environ. Sci., 8, No. 11, 3092-3108 (2015).CrossRefGoogle Scholar
  14. 14.
    T. S. Miller, A. B. Jorge, T. M. Suter, et al., Phys. Chem. Chem. Phys., 19, No. 24, 15613-15638 (2017).CrossRefPubMedGoogle Scholar
  15. 15.
    I. F. Teixeira, E. C. M. Barbosa, S. C. E. Tsang, and P. H. C. Camargo, Chem. Soc. Rev., 47, No. 20, 7783-7817 (2018).CrossRefPubMedGoogle Scholar
  16. 16.
    W. Iqbal, B. Yang, X. Zhao, et al., Catal. Sci. Technol., 8, No. 18, 4576-4599 (2018).CrossRefGoogle Scholar
  17. 17.
    Z. Wang, X. Hu, G. Zou, et al., Sustain. Energy Fuels, 3, No. 3, 611-655 (2019).CrossRefGoogle Scholar
  18. 18.
    L. Lin, Z. Yu, and X. Wang, Angew. Chem. Int. Ed., 58, No. 19, 6164-6175 (2019).CrossRefGoogle Scholar
  19. 19.
    N. Tian, H. Huang, X. Du, J. Mater. Chem. A, 7, No. 19, 11584-11612 (2019).CrossRefGoogle Scholar
  20. 20.
    Yun Zheng, Lihua Lin, Bo Wang, and Xinchen Wang, Angew. Chem. Int. Ed., 54, No. 44, 12868-12884 (2015).CrossRefGoogle Scholar
  21. 21.
    Wee-Jun Ong, Lling-Lling Tan, Yun Hau Ng, et al., Chem. Rev., 116, No. 12, 7159-7329 (2016).CrossRefPubMedGoogle Scholar
  22. 22.
    Junwei Fu, Jiaguo Yu, Chuanjia Jiang, and Bei Cheng, Adv. Energy Mater., 8, No. 3, 1701503 (2017).Google Scholar
  23. 23.
    S. Cao, J. Low, J. Yu, and M. Jaroniec, Adv. Mater., 27, No. 13, 2150-2176 (2015).CrossRefPubMedGoogle Scholar
  24. 24.
    X. Li, A. F. Masters, and T. Maschmeyer, Chem. Commun., 53, No. 54, 7438-7446 (2017).CrossRefGoogle Scholar
  25. 25.
    P. Kumar, R. Boukherroub, and K. Shankar, J. Mater. Chem. A, 6, No. 27, 12876-12931 (2018).CrossRefGoogle Scholar
  26. 26.
    M. Volokh, G. Peng, J. Barrio, and M. Shalom, Angew. Chem. Int. Ed., 58, No. 19, 6138-6151 (2019).CrossRefGoogle Scholar
  27. 27.
    Chunling Wang, Zhuxing Sun, Ying Zheng, and Yun Hang Hu, J. Mater. Chem. A, 7, No. 3, 865-887 (2019).CrossRefGoogle Scholar
  28. 28.
    A. L. Stroyuk and S. Ya. Kuchmy, Teor. Éksp. Khim., 53, No. 6, 337-360 (2017). [Theor. Exp. Chem., 53, No. 6, 359-386 (2017) (English translation).]Google Scholar
  29. 29.
    M. Shen, L. Zhang, and J. Shi, Nanotechnology, 29, 412001 (2018).CrossRefPubMedGoogle Scholar
  30. 30.
    Z. Sun, N. Talreja, H. Tao, et al., Angew. Chem. Int. Ed., 57, No. 26, 7610-7627 (2018).CrossRefGoogle Scholar
  31. 31.
    Y. Chen, G. Jia, Y. Hu, et al., Sustain. Energy Fuels, 1, No. 9, 1875-1898 (2017).CrossRefGoogle Scholar
  32. 32.
    Y. Fang and X. Wang, Chem. Commun., 54, No. 45, 5674-5687 (2018).CrossRefGoogle Scholar
  33. 33.
    Yuqing Luo, Yan Yan, Shasha Zhang, et al., J. Mater. Chem. A, 7, No. 3, 901-924 (2019).CrossRefGoogle Scholar
  34. 34.
    J. Safaei, N. A. Mohamed, M. F. M. Noh, et al., J. Mater. Chem. A, 6, No. 45, 22346-22380 (2018).CrossRefGoogle Scholar
  35. 35.
    W. Niu and Y. Yang, ACS Energy Lett., 3, No. 11, 2796-2815 (2018).CrossRefGoogle Scholar
  36. 36.
    M. M. Xavier, P. R. Nair, and S. Mathew, Analyst, 144, No. 5, 1475-1491 (2019).CrossRefPubMedGoogle Scholar
  37. 37.
    F. Parrino, M. Bellardita, E. I. García-López, et al., ACS Catal., 8, No. 12, 11191-11225 (2018).CrossRefGoogle Scholar
  38. 38.
    Y. Wang, X. Wang, and M. Antonietti, Angew. Chem. Int. Ed., 57, No. 49, 15936-15947 (2012).Google Scholar
  39. 39.
    Jun Chen, Jie Cen, Xiaoliang Xu, and Xiaonian Li, Catal. Sci. Technol., 6, No. 2, 349-362 (2018).CrossRefGoogle Scholar
  40. 40.
    A. Savateev, I. Ghosh, B. König, and M. Antonietti, Angew. Chem. Int. Ed., 57, No. 49, 15936-15947 (2018).CrossRefGoogle Scholar
  41. 41.
    G. Marcì, E. I. García-López, and L. Palmisano, Catal. Today, 315, 126-137 (2018).CrossRefGoogle Scholar
  42. 42.
    A. Savateev and M. Antonietti, ACS Catal., 8, No. 10, 9790-9808 (2018).CrossRefGoogle Scholar
  43. 43.
    Z. Zhao, Y. Suna, and F. Dong, Nanoscale, 7, No. 1, 15-37 (2015).CrossRefPubMedGoogle Scholar
  44. 44.
    K. S. Lakhi, D.-H. Park, and K. Al-Bahily, Chem. Soc. Rev., 46, No. 1, 72-101 (2017).CrossRefPubMedGoogle Scholar
  45. 45.
    O. Stroyuk, Solar Light Harvesting with Nanocrystalline Semiconductors, Lecture Notes in Chemistry Series, Springer (2017).Google Scholar
  46. 46.
    G. Mamba and A. K. Mishra, Appl. Catal. B, 198, 347-377 (2016).CrossRefGoogle Scholar
  47. 47.
    W. J. Ong, Front. Mater., 4, No. 11, 1-10 (2017).Google Scholar
  48. 48.
    X. Dong and F. Cheng, J. Mater. Chem. A, 3, No. 47, 23642-23652 (2015).CrossRefGoogle Scholar
  49. 49.
    Z. Zhou, Y. Zhang, Y. Shen, et al., Chem. Soc. Rev., 47, No. 7, 2298-2321 (2018).CrossRefPubMedGoogle Scholar
  50. 50.
    Q. Weng, G. Li, X. Feng, et al., Adv. Mater., 30, 1801600 (2018).CrossRefGoogle Scholar
  51. 51.
    G. Liu, C. Zhen, Y. Kang, et al., Chem. Soc. Rev., 47, No. 16, 6410-6444 (2018).CrossRefPubMedGoogle Scholar
  52. 52.
    Yuan Li, Jun Li, and Gaoke Zhang, ACS Sustain. Chem. Eng., 7, No. 4, 4328-4389 (2019).Google Scholar
  53. 53.
    M. Ilkaeva, L. Krivtsov, E. Bartashevich, et al., Green Chem., 19, No. 18, 4299-4304 (2017).CrossRefGoogle Scholar
  54. 54.
    Wenting Wu, Jinqiang Zhang, Weiyu Fan, et al., ACS Catal., 6, No. 5, 3365-3371 (2016).CrossRefGoogle Scholar
  55. 55.
    P. Zhang, Y. Wang, J. Yao, et al., Adv. Synth. Catal., 353, No. 9, 1447-1451 (2011).CrossRefGoogle Scholar
  56. 56.
    S. Verma, R. B. Nasir Baig, M. N. Nadagouda, and R. S. Varma, Catal. Today, 309, 248-252 (2018).CrossRefGoogle Scholar
  57. 57.
    W. Zhang, A. Bariotaki, I. Smonou, and F. Hollmann, Green Chem., 19, No. 9, 2096-2100 (2017).CrossRefGoogle Scholar
  58. 58.
    S. Verma, R. B. Nasir Baig, M. N. Nadagouda, and R. S. Varma, ACS Sustain. Chem. Eng., 4, No. 4, 2333-2336 (2016).CrossRefGoogle Scholar
  59. 59.
    S. Samanta and R. Srivastava, Appl. Catal. B, 218, 621-636 (2017).CrossRefGoogle Scholar
  60. 60.
    Juan Liu, Yanmei Yang, Naiyun Liu, et al., Green Chem., 16, No. 10, 4559-4565 (2014).CrossRefGoogle Scholar
  61. 61.
    Yalin Zhang, Lulu Hu, Cheng Zhu, et al., RCS Adv., 6, No. 659, 60394-60399 (2016).Google Scholar
  62. 62.
    Yalin Zhang, Lulu Hu, Cheng Zhu, et al., Catal. Sci. Technol., 6, No. 19, 7252-7258 (2016).CrossRefGoogle Scholar
  63. 63.
    Pengfei Zhang, Haoran Li, and Yong Wang, Chem. Commun., 50, No. 48, 6312-6315 (2014).CrossRefGoogle Scholar
  64. 64.
    A. Savateev, B. Kurpil, A. Mishchenko, et al., Chem. Sci., 9, No. 14, 3584-3591 (2018).CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    X. Chen, J. Zhang, X. Fu, et al., J. Am. Chem. Soc., 131, No. 33, 11658-11659 (2009).CrossRefPubMedGoogle Scholar
  66. 66.
    Z. Ding, X. Chen, M. Antonietti, and X. Wang, ChemSusChem, 4, No. 2, 274-281 (2010).PubMedGoogle Scholar
  67. 67.
    Xiangju Ye, Yanjuan Cui, Xiaoquing Qiu, and Xinchen Wang, Appl. Catal. B, 152/153, 383-389 (2014).CrossRefGoogle Scholar
  68. 68.
    S. M. Hosseini, M. Ghiaci, S. A. Kulinich ,W. Wunderlich, et al., J. Phys. Chem. C, 122, No. 48, 27477-27485 (2018).CrossRefGoogle Scholar
  69. 69.
    Bishal Bhuyan, Meghali Devi, Debashree Bora, et al., Eur. J. Inorg. Chem., No. 34, 3849-3858 (2018).Google Scholar
  70. 70.
    Xiangju Ye, Yun Zheng, and Xinchen Wang, Chin. J. Chem., 32, No. 6, 498-506 (2014).Google Scholar
  71. 71.
    B. Long, Z. Ding, and X. Wang, ChemSusChem, 6, No. 11, 2074-2078 (2013).CrossRefPubMedGoogle Scholar
  72. 72.
    F. Su, S. C. Mathew, G. Lipner, et al., J. Am. Chem. Soc., 132, No. 46, 16299-16301 (2010).CrossRefPubMedGoogle Scholar
  73. 73.
    Fei Li, Yong Wang, Jian Du, et al., Appl. Catal. B, 225, 258-263 (2018).Google Scholar
  74. 74.
    Pengfei Zhang, Jiang Deng, Jianyong Mao, et al., Chin. J. Catal., 36, No. 9, 1580-1586 (2015).CrossRefGoogle Scholar
  75. 75.
    L. Zhang, D. Liu, J. Guan, et al., Mater. Res. Bull., 59, 84-92 (2014).CrossRefGoogle Scholar
  76. 76.
    M. Lima, A. M. T. Silva, C. G. Silva, and J. L. Faria, J. Catal., 353, 44-53 (2017).CrossRefGoogle Scholar
  77. 77.
    Min Zhou, Pengju Yang, Rusheng Yuan, et al., ChemSusChem, 10, No. 22, 4451-4456 (2017).CrossRefPubMedGoogle Scholar
  78. 78.
    Jing Ding, Wei Xu, Hui Wan, et al., Appl. Catal. B, 221, 626-634 (2018).CrossRefGoogle Scholar
  79. 79.
    M. Bellardita, E. I. García-López, G. Marcì, et al., Appl. Catal. B, 220, 222-233 (2018).CrossRefGoogle Scholar
  80. 80.
    Y. Chen, J. Zhang, M. Zhang, and X. Wang, Chem. Sci., 4, No. 8, 3244-3248 (2013).CrossRefGoogle Scholar
  81. 81.
    M. Ilkaeva, I. Krivtsov, J. R. García, et al., Catal. Today, 315, 138-148 (2018).CrossRefGoogle Scholar
  82. 82.
    G. Marcì, E. I. García-López, F. R. Pomilla, et al., Catal. Today, 328, 21-28 (2019).CrossRefGoogle Scholar
  83. 83.
    A. Savateev, D. Dontsova, R. Kurpil, and M. Antonietti, J. Catal., 350, 203-211 (2017).CrossRefGoogle Scholar
  84. 84.
    Z. Zheng and X. Zhou, Chin. J. Chem., 30, No. 8, 1683-1686 (2012).CrossRefGoogle Scholar
  85. 85.
    S. Verma, R. B. Nasir Baig, M. N. Nadagouda, and R. S. Varma, ACS Sustain. Chem. Eng., 4, No. 3, 1094-1098 (2016).CrossRefGoogle Scholar
  86. 86.
    M. J. Lima, P. B. Tavares, A. M. T. Silva, et al., Catal. Today, 287, 70-77 (2017).CrossRefGoogle Scholar
  87. 87.
    P. V. R. K. Ramacharyulu, S. J. Abbas, S. R. Sahoo, and S. C. Ke, Catal. Sci. Technol., 8, No. 11, 2825-2834 (2018).CrossRefGoogle Scholar
  88. 88.
    S. Samanta, S. Khilari, D. Prodhan, and R. Srivastava, et al., ACS Sustain. Chem. Eng., 5, No. 3, 2562-2577 (2017).CrossRefGoogle Scholar
  89. 89.
    X. Dai, M. Xie, S. Meng, et al., Appl. Catal. B, 158/159, 382-390 (2014).CrossRefGoogle Scholar
  90. 90.
    H. Kasap, C. A. Caputo, B. C. M. Martindale, et al., J. Am. Chem. Soc., 138, No. 29, 9183-9192 (2016).CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Hui Wang, Xianshun Sun, Dandan Li, et al., J. Am. Chem. Soc., 139, No. 6, 2468-2473 (2017).CrossRefPubMedGoogle Scholar
  92. 92.
    K. Cerdan, W. Ouyang, J. C. Colmenares, Chem. Eng. Sci., 194, 78-84 (2019).CrossRefGoogle Scholar
  93. 93.
    A. Kumar, P. Pawan Kumar, A. Kumar Pathak, et al., Chem. Select., 2, No. 12, 3437-3443 (2017).Google Scholar
  94. 94.
    L. Song, S. Zhang, X. Wu, et al., Ind. Eng. Chem. Res., 51, No. 28, 9510-9514 (2012).CrossRefGoogle Scholar
  95. 95.
    Jinjuan Xue, Xinyao Li, Shuaishuai Ma, et al., J. Mater. Sci., 54, No. 1275-1290 (2019).CrossRefGoogle Scholar
  96. 96.
    Jie Xu, Liufeng Luo, Guangrui Xiao, et al., ACS Catal., 4, No. 9, 3302-3306 (2014).CrossRefGoogle Scholar
  97. 97.
    I. Krivtsov, E. I. García-López, G. Marcì, et al., Appl. Catal. B, 204, 430-439 (2017).CrossRefGoogle Scholar
  98. 98.
    Qi Wu, Yiming He, Huili Zhang, et al., Mol. Catal., 436, 10-18 (2017).Google Scholar
  99. 99.
    M. Ilkaeva, I. Krivtsov, E. I. García-López, et al., J. Catal., 359, 212-222 (2018).CrossRefGoogle Scholar
  100. 100.
    Huili Zhang, Zhiyuan Feng, Yekun Zhu, et al., J. Photochem. Photobiol., 371, 1-9 (2019).CrossRefGoogle Scholar
  101. 101.
    S. Xu, P. Zhou, Z. Zhang, et al., J. Am. Chem. Soc., 139, No. 41, 14775-14782 (2017).CrossRefPubMedGoogle Scholar
  102. 102.
    P. Zhang, Y. Wang, H. Li, and M. Antonietti, Green Chem., 14, No. 7, 1904-1908 (2012).CrossRefGoogle Scholar
  103. 103.
    Yunfeng Zhu, Xiaoyan Li, and Mingyuan Zhu, Catal. Sci. and Technol., 85, 5-8 (2016).Google Scholar
  104. 104.
    H. Wang, S. Jiang, S. Chen, et al., Adv. Mater., 28, No. 32 6940-6945 (2016).CrossRefPubMedGoogle Scholar
  105. 105.
    Yong Xu, Zi-Cheng Fu, Shuang Cao, et al., Catal. Sci. and Technol., 7, No. 3, 587-595 (2017).CrossRefGoogle Scholar
  106. 106.
    F. Su, S. C. Mathew, L. Möhlmann, et al., Angew. Chem. Int. Ed., 50, No. 3, 657-660 (2011).CrossRefGoogle Scholar
  107. 107.
    Di Zhang, Xinghua Han, Ting Dong, et al., J. Catal., 366, 237-244 (2018).CrossRefGoogle Scholar
  108. 108.
    Hao Tan, Xianmo Gu, Peng Kong, et al., Appl. Catal. B, 242, 67-75 (2019).CrossRefGoogle Scholar
  109. 109.
    Jun-Jun Zhang, Jie-Min Ge, Hong-Hui Wang, et al., ChemCatChem, 8, No. 22, 3441-3445 (2016).CrossRefGoogle Scholar
  110. 110.
    A. Kumar, P. Kumar, Ch. Josi, et al., Green Chem., 18, No. 8, 2514-2521 (2016).CrossRefGoogle Scholar
  111. 111.
    Yong Xu, Yong Chen, and Wen-Fu, Appl. Catal. B, 236, 176-183 (2018).CrossRefGoogle Scholar
  112. 112.
    Lingling Wang, Min Yu, Chaolong Wu, et al., Adv. Synth. Catal., 358, No. 16, 2631-2641 (2016).CrossRefGoogle Scholar
  113. 113.
    B. Kurpil, B. Kumru, T. Heil, et al., Green Chem., 20, No. 4, 838-842 (2018).CrossRefGoogle Scholar
  114. 114.
    Xiang Sun, Dong Jiang, Ling Zhang, and Wenzhong Wang, Appl. Catal. B, 220, 553-560 (2018).CrossRefGoogle Scholar
  115. 115.
    L. Möhlmann, M. Baar, J. Rieβ, et al., Adv. Synth. Catal., 354, No. 10, 1909-1913 (2012).CrossRefGoogle Scholar
  116. 116.
    L. Möhlmann and S. Blechert, Adv. Synth. Catal., 356, No. 13, 2825-2829 (2014).CrossRefGoogle Scholar
  117. 117.
    B. Kupril, K. Otte, M. Antonietti, and A. Savateev, Appl. Catal. B, 228, 97-102 (2018).CrossRefGoogle Scholar
  118. 118.
    T. Song, B. Zhou, G.-W. Peng, et al., Chem. Eur. J., 20, No. 3, 678-682 (2014).CrossRefPubMedGoogle Scholar
  119. 119.
    Y. Zhao and M. Antonietti, Angew. Chem. Int. Ed., 56, No. 32, 9336-9340 (2017).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. L. Stroyuk
    • 1
    • 2
    Email author
  • A. E. Raevskaya
    • 1
  • S. Ya. Kuchmy
    • 1
  1. 1.L. V. Pysarzhevsky Institute of Physical Chemistry, National Academy of Sciences of UkraineKyivUkraine
  2. 2.Forschungszentrum Jülich GmbH, Helmholtz-Institut Erlangen Nürnberg für Erneuerbare Energien (HI ERN)ErlangenGermany

Personalised recommendations