Advertisement

Theoretical and Experimental Chemistry

, Volume 54, Issue 5, pp 339–348 | Cite as

Peculiarities of Ion-Exchange Adsorption of Ca2+ and \( {\mathrm{HPO}}_4^{2-} \) as Main Factor of Self-Assembly of Apatite in the Surface Layer of Biomineralization Initiators

  • V. V. Strelko
  • O. V. Strelko
Article
  • 2 Downloads

Based on analysis of the literature and the authors’ own data on the formation of apatite (the main component of bone tissue) a mechanism is proposed for its self-assembly in living organisms on the surface of various initiators of biomineralization. It consists of alternating ion-exchange adsorption of calcium cations and hydrogen phosphate anions accompanied by alternation of the sign of the electric charge on the surface. Experimental data from study of the adsorption cycles of Ca2+ and \( {\mathrm{HPO}}_4^{2-} \) ions by cation exchangers are presented in support of the proposed mechanism.

Key words

biomineralization bioactive materials ion-exchange mechanism apatite self-assembly apatite biosystems 

References

  1. 1.
    L. Hench, J. Am. Ceram. Soc., 74, 1487-1510 (1991).CrossRefGoogle Scholar
  2. 2.
    M. Vallet-Regi, J. Chem. Soc. Dalton Trans., 97-108 (2001).Google Scholar
  3. 3.
    T. Kokubo, Acta Mater., 46, 2519-2527 (1998).CrossRefGoogle Scholar
  4. 4.
    L. L. Hench, J. D. Xynos, and J. M. Polak, J. Biomater. Sci Polym. Ed., 15, No. 4, 543-562 (2004).CrossRefGoogle Scholar
  5. 5.
    E. Tamjid, R. Bagheri, M. Vossoughi, et al., Mater. Lett., 65, 2530-2533 (2011).CrossRefGoogle Scholar
  6. 6.
    A. J. Salinas and M. Vallet-Regi, RSC Adv., 3, No. 28, 11116-11131 (2013).CrossRefGoogle Scholar
  7. 7.
    S. M. Naga, A. M. El-Kady, H. F. El-Maghraby, et al., J. Biomater. Appl., 28, No. 6, 813-824 (2014).CrossRefGoogle Scholar
  8. 8.
    Xin Bai, Mingzhu Cao, Sahla Syed, et al., Bioact. Mater., 3, No. 4, 401-417 (2018).CrossRefGoogle Scholar
  9. 9.
    T. Kokubo, H.-M. Kim, and M. Kawashita, Biomaterials, 24, 2161-2175 (2003).CrossRefGoogle Scholar
  10. 10.
    M. Tanahashi and T. Matsuda, J. Biomed. Mater. Res., 34, 305-315 (1997).CrossRefGoogle Scholar
  11. 11.
    A. C. Tas and S. B. Bhaduri, J. Mater. Res., 19, No. 9, 2742-2749 (2004).CrossRefGoogle Scholar
  12. 12.
    C. Aparicio and M. P. Ginebra (eds.), Biomineralization and Biomaterials: Fundamental and Applications, Woodhead Publ. (2015).Google Scholar
  13. 13.
    C. F. Danilevicius, J. B. Lopes, and R. M. Pereira, Braz. J. Med. Biol. Res., 40, No. 4, 435-442 (2007).CrossRefGoogle Scholar
  14. 14.
    K. S. Park, J. Park, S. H. Choi, et al., PloS One, 11, No. 3, e0151007 (2016).CrossRefGoogle Scholar
  15. 15.
    D. N. Strazhesko, V. V. Strelko, V. N. Belyakov, and S. C. Rubanik, J. Chromatogr., 102, 191-195 (1974).CrossRefGoogle Scholar
  16. 16.
    S. Barany and V. Strelko, Adsorption, 19, No. 2-4, 769-776 (2013).CrossRefGoogle Scholar
  17. 17.
    L. Glaser and H. D. B. Jenkins, J. Am. Chem. Soc., 122, No. 4, 632-638 (2000).CrossRefGoogle Scholar
  18. 18.
    V. Strelko and Yu. Gorlov, Eurasian Chemico-Technological Journal, 18, 39-45 (2016).CrossRefGoogle Scholar
  19. 19.
    M. Aizava, T. Matsuura, and Z. Zhuang, Biol. Pharm. Bull., 36, No. 11, 1654-1661 (2013).CrossRefGoogle Scholar
  20. 20.
    Y. Su, H. Cui, Q. Li, et al., Water Res., 47, No. 14, 5018-5026 (2013).CrossRefGoogle Scholar
  21. 21.
    I. Manjubaly, S. Sheler, J. Bossert, and K. D. Jandt, Acta Biomater., No. 1, 75-84 (2006).Google Scholar
  22. 22.
    T. Zhao and T. Feng, RSC Adv., 6, 90878-90886 (2016).CrossRefGoogle Scholar
  23. 23.
    V. V. Strelko, J. Sol-Gel Sci. Technol., 68, No. 3, 438-446 (2013).CrossRefGoogle Scholar
  24. 24.
    G. A. Parks, Chem. Rev., 65, No. 2, 177-198 (1965).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Sorption and Problems of EndoecologyNational Academy of Sciences of UkraineKyivUkraine
  2. 2.Boston UniversityBostonUSA

Personalised recommendations