Advertisement

Theoretical and Experimental Chemistry

, Volume 54, Issue 5, pp 331–338 | Cite as

Effect of Temperature on the Spectral Fluorescent Properties of Positively Solvatochromic Merocyanines

  • A. V. KulinichEmail author
  • A. A. Ishchenko
  • S. L. Bondarev
  • A. A. Sukhodola
Article
  • 41 Downloads

Fluorescence quenching of positively solvatochromic merocyanines with a bridge group in the polymethine chain increases linearly with increasing temperature and is enhanced with increased chain length. Analysis of the kinetics of the fluorescence quenching gave the activation energy of this process. The absorption and fluorescence spectra in solvents of different viscosity and polarity at room temperature and 77 K showed that the major channel for fluorescence quenching is photoisomerization of the bonds in the polymethine chain. This conclusion was supported by TDDFT quantum-chemical calculations for the bond lengths of the merocyanines in the ground and excited states.

Key words

merocyanines solvatochromism thermochromism fluorescence quenching TDDFT calculations 

Notes

The work was carried out with the support of the Republic of Belarus’ Basic Research Fund (Grant No. F18R-202).

References

  1. 1.
    K. Sone and Y. Fukuda, Inorganic Thermochromism (Inorganic Chemistry Concepts), Springer, Berlin-Heidelberg (1987).CrossRefGoogle Scholar
  2. 2.
    A. Seeboth, D. Lötzsch, R. Ruhmann, and O. Muehling, Chem. Rev., 114, No. 5, 3037-3068 (2014), DOI:  https://doi.org/10.1021/cr400462e.CrossRefPubMedGoogle Scholar
  3. 3.
    R. Klajn, Chem. Soc. Rev., 43, 148-184 (2014), DOI:  https://doi.org/10.1039/C3CS60181A.CrossRefPubMedGoogle Scholar
  4. 4.
    M. Ryoka, O. Hideki, A. Madoka, and O. Atsushi, Bull. Chem. Soc. Jpn, 74, No. 12, 2295-2301 (2001), DOI:  https://doi.org/10.1246/besj.74.2295.CrossRefGoogle Scholar
  5. 5.
    M. Martínez-Abadía, S. Varghese, B. Milián-Medina, et al., Phys. Chem. Chem. Phys., 17, 11715-11724 (2015), DOI:  https://doi.org/10.1039/C5CP00696A.CrossRefPubMedGoogle Scholar
  6. 6.
    B. Monteiro, M. Outis, H. Cruz, et al., Chem. Commun., 53, 850-853 (2017), DOI:  https://doi.org/10.1039/C6CC08593H.CrossRefGoogle Scholar
  7. 7.
    A. V. Kulinich and A. A. Ishchenko, Russ. Chem. Rev., 78, No. 2, 141-164 (2009), DOI:  https://doi.org/10.1070/RC2009v078n02ABEH003900.CrossRefGoogle Scholar
  8. 8.
    A. A. Ishchenko, A. V. Kulinich, S. L. Bondarev, et al., Opt. Spectrosc., 101, No. 1, 90-97 (2006), DOI:  https://doi.org/10.1134/S0030400X06070162.CrossRefGoogle Scholar
  9. 9.
    G. U. Bublitz, R. Ortiz, S. R. Marder, and S. G. Boxer, J. Am. Chem. Soc., 119, No. 14, 3365-3376 (1997), DOI:  https://doi.org/10.1021/ja9640814.CrossRefGoogle Scholar
  10. 10.
    A. A. Ishchenko, A. V. Kulinich, S. L. Bondarev, and T. F. Raichenok, Spectrochim. Acta A, 190, 332-335 (2018), DOI:  https://doi.org/10.1016/j.saa.2017.09.054. CrossRefGoogle Scholar
  11. 11.
    A. V. Kulinich, N. A. Derevyanko, and A. A. Ishchenko, J. Photochem. Photobiol. A, 198, Nos. 2/3, 119-125 (2008), DOI:  https://doi.org/10.1016/j.jphotochem.2008.02.025.CrossRefGoogle Scholar
  12. 12.
    A. C. Benniston and A. Harriman, J. Chem. Soc., Faraday Trans., 94, No. 13, 1841-1847 (1998), DOI:  https://doi.org/10.1039/A801248B.CrossRefGoogle Scholar
  13. 13.
    A. V. Kulinich, A. A. Ishchenko, A. K. Chibisov, and G. V. Zakharova, J. Photochem. Photobiol. A, 274, 91-97 (2014), DOI:  https://doi.org/10.1016/j.jphotochem.2013.09.016.CrossRefGoogle Scholar
  14. 14.
    M. D. Lechner (ed.), Static Dielectric Constants of Pure Liquids and Binary Liquid Mixtures: Supplement to IV/6 (Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology-New Series, Book 17), Springer, Berlin-Heidelberg (2008).Google Scholar
  15. 15.
    A. V. Kulinich, N. A. Derevyanko, A. A. Ishchenko, et al., J. Photochem. Photobiol. A, 200, 106-113 (2008), DOI:  https://doi.org/10.1016/j.jphotochem.2008.06.020.CrossRefGoogle Scholar
  16. 16.
    A. A. Ishchenko, V. A. Svidro, and N. A. Derevyanko, Dyes Pigments, 10, No. 2, 85-96 (1989), DOI:  https://doi.org/10.1016/0143-7208(89)85001-6.CrossRefGoogle Scholar
  17. 17.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09, Rev. D.01, Gaussian, Inc., Wallingford, CT (2009).Google Scholar
  18. 18.
    J. Tomasi, B. Mennucci, and R. Cammi, Chem. Rev., 105, 2999-3093 (2005), DOI:  https://doi.org/10.1021/cr9904009.CrossRefPubMedGoogle Scholar
  19. 19.
    C. Reichardt and T. Welton, Solvents and Solvent Effects in Organic Chemistry, Wiley-VCH, Weinheim (2010).CrossRefGoogle Scholar
  20. 20.
    P. Gautam and A. Harriman, J. Chem. Soc., Faraday Trans., 90, 697-701 (1994), DOI:  https://doi.org/10.1039/FT9949000697. CrossRefGoogle Scholar
  21. 21.
    R. Giri, Spectrochim. Acta A, 48, No. 6, 843-848 (1992), DOI:  https://doi.org/10.1016/0584-8539(92)80080-G.CrossRefGoogle Scholar
  22. 22.
    G. Bach and S. Dähne, Rodd’s Chemistry of Carbon Compounds, M. Sainsbury (ed.), Vol IVB, Elsevier, Amsterdam (1997), pp. 383-481.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. V. Kulinich
    • 1
    Email author
  • A. A. Ishchenko
    • 1
  • S. L. Bondarev
    • 2
  • A. A. Sukhodola
    • 2
  1. 1.Institute of Organic Chemistry, National Academy of Sciences of UkraineKyivUkraine
  2. 2.B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus’MinskBelarus

Personalised recommendations