Advertisement

Theoretical and Experimental Chemistry

, Volume 54, Issue 3, pp 210–216 | Cite as

Sorption of Octyl-, Decyl-, and Dodecyltrimethylammonium Cations from Premicellar Solutions onto the Na-Form of Vermiculite

  • D. A. Krysenko
  • Yu. I. Tarasevich
  • S. A. Dolenko
Article

Essential differences were found in the mechanisms of adsorption of trimethyloctylammonium (TMOA), decyltrimethylammonium (DTMA), and dodecyltrimethylammonium (DDTMA) cations from premicellar aqueous solutions of their bromides onto the Na-form of Kovdor vermiculite. It was shown that the non-selective exchange of TMOA cations with sodium ions occurs preferentially at the external surface of the mineral. The adsorption of DTMA occurs by a mixed mechanism: part of its cations substitute the exchangeable Na+ ions of the vermiculite, while the other part is sorbed in salt form. The DDTMA cations interact with the vermiculite by an ion-exchange mechanism with almost complete displacement of the Na+ ions from the exchange complex of the mineral.

Key words

vermiculite cationic surfactants ion exchange adsorption 

References

  1. 1.
    M. Valášková and G. S. Martynková, Clay Minerals in Nature – Their Characterization, Modification and Application, Rijeka, Intech, Croatia (2012), pp. 209-238.Google Scholar
  2. 2.
    Yu. I. Tarasevich, E. V. Aksenenko, and S. V. Bondarenko, Adsorption on New and Modified Inorganic Sorbents, Elsevier Sci. B.V. (1996), pp. 539-571. (Stud. Surf. Sci. Catal., Vol. 99).Google Scholar
  3. 3.
    W. D. Jonns and P. K. Sen Gupta, Am. Miner., 52, Nos. 11/12, 1706-1724 (1967).Google Scholar
  4. 4.
    G. Lagaly, A. Weis, and Z. Z. Koll, Polym., 238, Nos. 1/2, 485-493 (1970).Google Scholar
  5. 5.
    É. V. Sharkina, Structure and Properties of Organomineral Compounds [in Russian], Nauk. Dumka, Kiev (1976).Google Scholar
  6. 6.
    G. Lagaly, M. Ogawa, and I. Dekany, Handbook of Clay Science, F. Bergaya, B. K. G. Theng, G. Lagaly (eds.), Elsevier, Amsterdam (2006), pp. 309-377. (Developments in Clay Science, Vol. 1).Google Scholar
  7. 7.
    S. Xu and S. A. Boyd, Environ. Sci. Technol., 29, 312-320 (1995).CrossRefPubMedGoogle Scholar
  8. 8.
    Yu. I. Tarasevich, D. A. Krysenko, V. E. Polyakov, and V. Ya. Demchenko, Kolloidn. Zh., 75, No. 5, 662-666 (2013).Google Scholar
  9. 9.
    A. Vahedi-Faridi and S. Guggenheim, Clays Clay Miner., 45, No. 6, 859-866 (1997).CrossRefGoogle Scholar
  10. 10.
    A. A. Abramzon, Surface-Active Substances: Properties and Use [in Russian], Khimiya, Leningrad (1981).Google Scholar
  11. 11.
    G. Lagaly, Clay Miner., 16, No. 1, 1-21 (1981).CrossRefGoogle Scholar
  12. 12.
    Yu. A. Kokotov and V. A. Pasechnik, Equilibrium and Kinetics of Ion Exchange [in Russian], Khimiya, Leningrad (1970).Google Scholar
  13. 13.
    R. Harjula and J. Lehto, React. Funct. Polym., 27, No. 2, 147-153 (1995).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.A. V. Dumansky Institute of Colloid Chemistry and Chemistry of WaterNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations