Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effect of Structure on the Photovoltaic Properties of Merocyanine Dyes in Polymer Films

  • 86 Accesses

  • 2 Citations

Relationships have been found connecting photovoltaic properties with the solvatochromic sign, donor–acceptor properties of the terminal groups, and length of the polymethine chain of merocyanine dyes in films of photoconducting and nonphotoconducting polymers. A DFT quantum-chemical analysis indicated that the hole photoconductivity of the polymer composites studied results from electron transfer from the carbazole fragment of the polymer to the dye aggregate.

This is a preview of subscription content, log in to check access.

Fig. 1.

References

  1. 1.

    O. Malinkiewicz, T. Grancha, A. Molina-Ontoria, et al., Adv. Energy Mater., 3, No. 4, 472-477 (2013), doi: https://doi.org/10.1002/aenm.201200764.

  2. 2.

    G. V. Bulavko and A. A. Ishchenko, Russ. Chem. Rev., 83, No. 7, 575-599 (2014), doi: https://doi.org/10.1070/RC2014v083n07ABEH004417.

  3. 3.

    V. N. Bliznyuk, J. Gasiorowski, A. A. Ishchenko, et al., Org. Electron., 15, No. 6, 1105-1112 (2014), doi: https://doi.org/10.1016/j.orgel.2014.03.003.

  4. 4.

    A. Arjona-Esteban, J. Krumain, A. Liess, et al., J. Am. Chem. Soc., 137, No. 42, 13524-13534 (2015), doi: https://doi.org/10.1021/jacs.5b06722.

  5. 5.

    D. Saccone, S. Galliano, N. Barbero, et al., Eur. J. Org. Chem., No. 13, 2244-2259 (2016), doi: https://doi.org/10.1002/ejoc.201501598.

  6. 6.

    C.-P. Lee, R. Y.-Y. Lin, L.-Y. Lin, et al., RSC Adv., 5, No. 30, 23810-23825 (2015), doi: https://doi.org/10.1039/C4RA6493H.

  7. 7.

    V. M. Granchak, T. V. Sakhno, and S. Ya. Kuchmy, Teor. Éksp. Khim., 50, No. 1, 1-20 (2014). [Theor. Exp. Chem., 50, No. 1, 1-20 (2014) (English translation)], doi: https://doi.org/10.1007/s11237-014-9342-1.

  8. 8.

    A. A. Ishchenko, Russ. Chem. Rev., 60, No. 8, 865-884 (1991), doi: https://doi.org/10.1070/RC1991v060n08ABEH001116.

  9. 9.

    G. V. Bulavko, N. A. Davidenko, N. A. Derevyanko, and A. A. Ishchenko, High Energy Chem., 49, No. 5, 331-335 (2015), doi: https://doi.org/10.1134/S0018143915050045.

  10. 10.

    V. N. Bliznyuk, J. Gasiorowski, A. A. Ishchenko, et al., Appl. Surf. Sci., 389, 419-427 (2016), doi: https://doi.org/10.1016/j.apsusc.2016.07.130.

  11. 11.

    G. V. Bulavko, N. A. Davidenko, A. G. Shkavro, et al., Funct. Mater. Lett., 10, No. 2, 1750007(1-5) (2017), doi: https://doi.org/10.1142/S1793604717500072.

  12. 12.

    G. V. Bulavko, N. A. Davidenko, N. A. Derevyanko, and A. A. Ishchenko, Teor. Éksp. Khim., 52, No. 6, 331-336 (2016). [Theor. Exp. Chem., 52, No. 6, 331-336 (2017) (English translation)], doi: https://doi.org/10.1007/s11237-017-9486-x.

  13. 13.

    A. V. Kulinich and A. A. Ishchenko, Russ. Chem. Rev., 78, No. 2, 141-164 (2009), doi: https://doi.org/10.1070/RC2009v078n02ABEH003900.

  14. 14.

    A. V. Kulinich, N. A. Derevyanko, and A. A. Ishchenko, Russ. Chem. Bull., 54, No. 12, 2820-2830 (2005), doi: https://doi.org/10.1007/s11172-006-0196-x.

  15. 15.

    A. V. Kulinich, N. A. Derevyanko, and A. A. Ishchenko, J. Photochem. Photobiol. A, 188, Nos. 2/3, 207-217 (2007), doi: https://doi.org/10.1016/j.photochem.2006.12.014.

  16. 16.

    G. V. Bulavko, N. A. Davidenko, N. A. Derevyanko, et al., Teor. Éksp. Khim., 51, No. 1, 34-40 (2015). [Theor. Exp. Chem., 51, No. 1, 37-44 (2015) (English translation)], doi: https://doi.org/10.1007/s11237-0.15-9395-9.

  17. 17.

    G. V. Bulavko, N. A. Davidenko, A. A. Ishchenko, et al., Tech. Phys. Lett., 41, No. 2, 191-194 (2015), doi: https://doi.org/10.1134/S1063785015010182.

  18. 18.

    M. Nonnenmacher, M. P. O’Boyle, and H. K. Wickramasinghe, Appl. Phys. Lett., 58, No. 25, 2921-2923 (1991), doi: https://doi.org/10.1063/1.105227.

  19. 19.

    M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09, Rev. D.01, Gaussian, Inc., Wallingford, CT (2009).

  20. 20.

    M. Dierksen and S. Grimme, J. Phys. Chem. A, 108, No. 46, 10225-10237 (2004), doi: https://doi.org/10.1021/jp047289.

  21. 21.

    J. Kido, K. Hongawa, K. Okuyama, and K. Nagai, Appl. Phys. Lett., 63, No. 19, 2627-2629 (1993), doi: https://doi.org/10.1063/1.110402.

  22. 22.

    A. V. Kulinich, E. K. Mikitenko, and A. A. Ishchenko, Phys. Chem. Chem. Phys., 18, No. 5, 3444-3453 (2016), doi: https://doi.org/10.1039/c5cp06653k.

  23. 23.

    J. Nelson, Phys. Rev. B, 67, No. 15, 155209(1-10) (2003), doi: https://doi.org/10.1103/PhysRevB.67.155209.

  24. 24.

    A. A. Ishchenko, A. V. Kulinich, and S. V. Shishkina, Dyes Pigments, 145, 181-188 (2017), doi: https://doi.org/10.1016/j.dyepig.2017.06.009.

Download references

Author information

Correspondence to A. V. Kulinich.

Additional information

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 54, No. 3, pp. 161-167, May-June, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kulinich, A.V., Ishchenko, A.A., Bulavko, G.V. et al. Effect of Structure on the Photovoltaic Properties of Merocyanine Dyes in Polymer Films. Theor Exp Chem 54, 178–185 (2018). https://doi.org/10.1007/s11237-018-9559-5

Download citation

Key words

  • merocyanine dyes
  • organic photovoltaics
  • carbazole-containing polymer
  • photo-emf