Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Formation of Nanostructures Upon Photoexcitation of Surface Plasmon Resonance in Nanocomposites Derived from Textured Gold Films and Chalcogenide Glass

  • 50 Accesses

Photosensitive plasmon-active structures derived from nanostructured gold films and chalcogenide glass As20Se80 have been prepared. Regular sub-wavelength reliefs are formed on the surface of As20Se80 glass due to the interaction of an amorphous chalcogenide glass film located on the metallic film nanostructures of different geometry and a localized near-field generated by photoexcitation of surface plasmon resonance in the gold films. The shape of the reliefs depends on the polarization of the laser light beam.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  1. 1.

    J. L. Person, F. Colas, C. Compere, et al., Sensors Actuators B, 130, No. 2, 771-776 (2008).

  2. 2.

    R. Jha and R. Sharma, Opt. Lett., 34, No. 6, 749-751 (2009).

  3. 3.

    R. Jha and R. Sharma, J. Opt. A, 11, No. 4, 045502-1-7 (2009).

  4. 4.

    Z. L. Samson, C. Yen, K. F. MacDonald, et al., Phys. Status Solidi RRL, 4, No. 10, 274-276 (2010).

  5. 5.

    I. Z. Indutnyi, I. I. Robur, P. F. Romanenko, and A. V. Stronski, Proc. SPIE, 1555, 248-257 (1991).

  6. 6.

    A. Saliminia, T. V. Galstian, and A. Villeneuve, Phys. Rev. Lett., 85, 4112-4115 (2000).

  7. 7.

    M. L. Trunov, P. M. Lytvyn, P. M. Nagy, and O. M. Dyachyns’ka, Appl. Phys. Lett., 96, No. 11, 111908-1-3 (2010).

  8. 8.

    M. L. Trunov, P. M. Lytvyn, P. M. Nagy, et al., Phys. Status Solidi b, 251, No. 7, 1354-1362 (2014).

  9. 9.

    T. W. Ebbersen, H. J. Lezec, H. F. Ghaemi, et al., Nature, 391, 667-669 (1998).

  10. 10.

    Kuang-Li Lee, Way-Seen Wanga, and Pei-Kuen Wei, Biosens. Bioelectron., 24, 210-215 (2008).

  11. 11.

    C. J. Halteen and R. P. Van Duyne, J. Vac. Sci. Technol. A, 13, No. 3, 1553-1558 (1995).

  12. 12.

    J. R. Krenn, A. Leitner, and J. R. Aussenegg, Encyclopedia of Nanoscience and Nanotechnology, H. S. Nalwa (ed.), American Science Publishers, Valencia, CA, 3, No. 1, 414-419 (2004).

  13. 13.

    J. Kim, K. L.-B. Song, and S. Q. Lee, J. Microsc., 209, 236-240 (2003).

  14. 14.

    H. J. Maas, J. Heimel, H. U. Fuchs, et al., J. Microsc., 209, 241-248 (2003).

  15. 15.

    R. Hillenbrand, P. Keilmann, P. Hanarp, et al., Appl. Phys. Lett., 83, No. 2, 368-370 (2003).

  16. 16.

    P. G. Kik, S. A. Maier, and H. A. Atwater, Mat. Res. Soc. Symp. Proc., 705, Y3.6-Y3.12 (2002).

  17. 17.

    Y. Zou, D. Zhang, H. Lin, et al., Adv. Opt. Mater., 2, 478-486 (2014).

  18. 18.

    S. N. Yannopoulos and M. L. Trunov, Phys. Status Solidi b, 246, No. 8, 1773-1785 (2009).

  19. 19.

    M. L. Trunov, P. M. Lytvyn, and O. M. Dyachyns’ka, Appl. Phys. Lett., 97, No. 3, 031905-1-3 (2010).

  20. 20.

    V. Takáts, M. L. Trunov, K. Vad, et al., Mater. Lett., 160, 558-561 (2015).

  21. 21.

    Y. Kaganovskii, D. L. Beke, S. Charnovych, et al., J. Appl. Phys., 110, No. 6, 063502-1-5 (2011).

  22. 22.

    W. Rechberger, A. Hohenau, A. Leitner, et al., J. Appl. Phys., 220, Nos. 1-3, 137-141 (2003).

  23. 23.

    M. Meier, A. Wokaun, and P. F. Liao, J. Opt. Soc. Am. B, 2, No. 6, 931-949 (1985).

  24. 24.

    K. Carron, W. Fluhr, M. Meier, et al., J. Opt. Soc. Am. B, 3, No. 3, 430-440 (1986).

  25. 25.

    B. Lamprecht, G. Schider, and R. T. Leclmer, Phys. Rev. Lett., 84, No. 20, 4721-4724 (2000).

  26. 26.

    B. T. Draine and P. J. Flatau, J. Opt. Soc. Am. A, 11, No. 4, 1491-1499 (1994).

  27. 27.

    L. Novotny, D. W. Pohl, and B. Hecht, Opt. Lett., 20, No. 9, 970-972 (1995).

Download references

The authors express their gratitude for assistance in the preparation of samples to Dr. Manuel Rodrigues Gonçalves of the Institute of Experimental Physics, Ulm University, Ulm, Germany and Prof. Yuri Kaganovskii of the Department of Physics, Bar-Ilan University, Ramat Gan, Israel.

This work was carried out with the financial support of the Slovak-Ukrainian Project No. SK-UA-2013-0046 (M/127-2016).

Author information

Correspondence to M. L. Trunov.

Additional information

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 54, No. 2, pp. 98-103, March-April, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Trunov, M.L., Lytvyn, P.M., Sterligov, V.A. et al. Formation of Nanostructures Upon Photoexcitation of Surface Plasmon Resonance in Nanocomposites Derived from Textured Gold Films and Chalcogenide Glass. Theor Exp Chem 54, 107–113 (2018). https://doi.org/10.1007/s11237-018-9553-y

Download citation

Key words

  • photoinduced mass transport
  • chalcogenide glasses
  • nanoparticles
  • surface plasmon resonance