Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Two-Path Conversion of Methanol to Olefins on H-ZSM-5/Al2O3 Catalyst

  • 106 Accesses

  • 4 Citations

It was shown that during the transformation of methanol on H-ZSM-5/Al2O3 catalyst with zeolite/alumina ratio 1/1 increase of the methanol partial pressure leads to an extremal increase in the formation rate of ethylene, propylene, and butylene while the formation rate of dimethyl ether increases monotonically. The yield of the olefins increases with increase of temperature on account of increase in the degree of transformation of the methanol while the dimethyl ether yield passes through a maximum. The results are explained by a kinetic scheme according to which the dimethyl ether and olefin formation follows different routes.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    B. Z. Solyar, L. Sh. Glazov, E. A. Klimtseva, et al., Khim. Tekhnol. Topliv Masel, 3, 19-23 (2010).

  2. 2.

    C. Arcoumanis, C. Bae, R. Crookes, and E. Kinoshita, Fuel, 87, 1014-1030 (2008).

  3. 3.

    T. H. Fleisch, A. Basu, M. J. Gradassi, and J. G. Masin, Stud. Surface Sci. Catal., 107, 117-126 (1997).

  4. 4.

    S. N. Khadzhiev, M. V. Magomedova, and E. G. Peresypkina, Petrol. Chem., 54, No. 4, 245-269 (2014).

  5. 5.

    S. N. Khadzhiev, M. V. Magomedova, and E. G. Peresypkina, Petrol. Chem., 55, No. 7, 503-521 (2015).

  6. 6.

    N. Hadi, A. Niaei, S. R. Nabavi, et al., Chem. Biochem. Eng. Q., 28, No. 1, 53-63 (2014).

  7. 7.

    A. Taheri Najafabadi, S. Fatemi, M. Sohrabi, and M. Salmasi, J. Ind. Eng. Chem., 18, No. 1, 29-37 (2012).

  8. 8.

    S. Fadaeerayeni, M. Sohrabi, and S. J. Royaee, Petrol. Sci. Technol., 33, No. 10, 1093-1100 (2015).

  9. 9.

    L. Ying, X. Yuan, M. Ye, et al., Chem. Eng. Res. Design, 100, 179-191 (2015).

  10. 10.

    O. Deutschmann, H. Knözinger, K. Kochloefl, and T. Turek, Heterogeneous Catalysis and Solid Catalysts, Ulmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co, Weinheim (2009).

  11. 11.

    M. Khatamian and M. Irani, J. Iran. Chem. Soc., 6, No. 1, 187-194 (2009).

  12. 12.

    R. Lu, H. Tangbo, Q. Wang, and S. Xiang, J. Natural Gas Chem., 12, No. 1, 56-62 (2003).

  13. 13.

    N. A. S. Amin and D. D. Anggoro, J. Natural Gas Chem., 12, No. 2, 123-134 (2003).

  14. 14.

    A. T. Aguayo, D. Mier, A. G. Gayubo, et al., Ind. Eng. Chem. Res., 49, No. 24, 12371-12378 (2010).

  15. 15.

    T.-Y. Y. Park and G. F. Froment, Ind. Eng. Chem. Res., 40, No. 20, 4172-4186 (2001).

  16. 16.

    T.-Y. Y. Park and G. F. Froment, Ind. Eng. Chem. Res., 40, No. 20, 4187-4196 (2001).

  17. 17.

    W. Wang, Y. Jiang, and M. Hunger, Catal. Today, 113, 102-114 (2006).

  18. 18.

    M. Bjørgen, S. Akyalcin, U. Olsbye, et al., J. Catal., 275, 170-180 (2010).

Download references

The authors express their gratitude to V. I. Gritsenko and O. Z. Didenko for assistance in the organization and execution of the catalytic experiment.

Author information

Correspondence to A. A. Zhokh.

Additional information

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 53, No. 2, pp. 121-127, March-April, 2017.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhokh, A.A., Trypolskyi, A.I. & Strizhak, P.E. Two-Path Conversion of Methanol to Olefins on H-ZSM-5/Al2O3 Catalyst. Theor Exp Chem 53, 130–137 (2017). https://doi.org/10.1007/s11237-017-9509-7

Download citation

Key words

  • zeolite H-ZSM-5
  • methanol
  • hydrocarbons