Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Spectral Characteristics and Electronic Conductivity of Composites Obtained by Reaction of Iodine Vapor with Isostructural Zinc- and Nickel-Containing Metal–Organic Frameworks

  • 81 Accesses

It was shown that reaction of the isostructural metal–organic frameworks formed by cationic macrocyclic complexes of nickel or zinc and 4,4′-diphenyldicarboxylate or 4,4′-oxybisbenzoate with iodine vapor leads to the formation of composites in which the iodine content is substantially higher than in the case of the materials obtained by sorption from solutions. It was established that in the case of interaction of the nickel-containing MOFs with iodine the metal ion is oxidized with the formation of nickel(III), leading to increase of their sorption capacity compared with the zinc-containing analogs. It was shown that the composites based on zinc compounds have higher electronic conductivity than the analogous compounds of nickel.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    L. R. Mac-Gillivray and C. M. Lukehart (eds.), Metal–Organic Framework Materials, John Wiley and Sons, Hoboken (2014).

  2. 2.

    L. Sun, M. G. Campbell, and M. Dinca, Angew. Chem. Int. Ed., 55, No. 11, 3566-3579 (2016).

  3. 3.

    R. Kaur, K.-H. Kim, A. K. Paul, and A. Deep, J. Mater. Chem. A, 4, No. 11, 3991-4002 (2016).

  4. 4.

    J. Lei, R. Qian, P. Ling, et al., TrAC, Trends Anal. Chem., 58, 71-78 (2014).

  5. 5.

    A. Morozana and F. Jaouen, Energy Environ. Sci., 5, No. 11, 9269-9290 (2012).

  6. 6.

    M. D. Allendorf, M. E. Foster, F. Léonard, et al, J. Phys. Chem. Lett., 6, No. 7, 1182-1195 (2015).

  7. 7.

    D. Kim, D. W. Kim, W. G. Hong, and A. Coskun, J. Mater. Chem. A, 4, No. 20, 7710-7717 (2016).

  8. 8.

    M.-H. Zeng, Q.-X. Wang, Y.-X. Tan, et al., J. Am. Chem. Soc., 132, No. 8, 2561-2563 (2010).

  9. 9.

    M.-H. Zeng, Z. Yin, Y.-X. Tan, et al., J. Am. Chem. Soc., 136, No. 12, 4680-4688 (2014).

  10. 10.

    C. Falaise, C. Volkringer, J. Facqueur, et al., Chem. Commun., 49, No. 87, 10320-10322 (2013).

  11. 11.

    S. Horike, M. Sugimoto, K. Kongpatpanich, et al., J. Mater. Chem. A, 1, No. 11, 3675-3679 (2013).

  12. 12.

    D. Y. Lee, E.-K. Kim, N. K. Shrestha, et al., ACS Appl. Mater. Interfaces, 7, No. 33, 18501-18507 (2015).

  13. 13.

    A. G. Lappin, Advances in Inorganic Chemistry and Radiochemistry, A. G. Sykes (ed.), Acad. Press, San Diego (1988), Vol. 32, pp. 241-295.

  14. 14.

    H. Kim and M. P. Suh, Inorg. Chem., 44, No. 4, 810-812 (2005).

  15. 15.

    Y. E. Cheon and M. P. Suh, Chem. Eur. J., 14, No. 13, 3961-3967 (2008).

  16. 16.

    I. L. Andriichuk, L. V. Tsymbal, and Ya. D. Lampeka, Teor. Éksp. Khim., 45, No. 5, 295-299 (2009). [Theor. Exp. Chem., 45, No. 5, 308-312 (2009) (English translation).]

  17. 17.

    I. L. Andriichuk, L. V. Tsymbal, and Ya. D. Lampeka, Teor. Éksp. Khim., 45, No. 4, 239-244 (2009). [Theor. Exp. Chem., 45, No. 4, 252-257 (2009) (English translation).]

  18. 18.

    M. P. Suh, H. R. Moon, E. Y. Lee, et al., J. Am. Chem. Soc., 128, No. 14, 4710-4718 (2006).

  19. 19.

    R. I. Gurtovyi, L. V. Tsymbal, R. N. Kuz’min, et al., Teor. Éksp. Khim., 52, No. 2, 103-108 (2016). [Theor. Exp. Chem., 52, No. 2, 104-110 (2016) (English translation).]

  20. 20.

    Q.-K. Liu, J.-P. Maa, and Y. B. Dong, Chem. Commun., 47, No. 25, 7185-7187 (2011).

  21. 21.

    M. Arici, O. Z. Yeşilel, M. Taş, and H. Demiral, Inorg. Chem., 54, No. 23, 11283-11291 (2015).

  22. 22.

    R. I. Gurtovyi, L. V. Tsymbal, S. Shova, and Y. D. Lampeka, Teor. Éksp. Khim., 52, No. 1, 40-46 (2016). [Theor. Exp. Chem., 52, No. 1, 44-50 (2016) (English translation).]

  23. 23.

    Ya. D. Lampeka, L. V. Tsymbal, A. V. Barna, et al., Dalton Trans., 41, No. 14, 4118-4125 (2012).

  24. 24.

    A. L. Spek, PLATON, AMultipurpose Crystallographic Tool, Vol. 1.16, Utrecht University, Utrecht, The Netherlands (2001).

  25. 25.

    G. Wirnsberger, H. P. Fritzer, A. Popitsch, et al., Angew. Chem. Int. Ed. Engl., 35, Nos. 23/24, 2777-2779 (1996).

Download references

Author information

Correspondence to R. I. Gurtovyi.

Additional information

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 52, No. 5, pp. 309-315, September-October, 2016.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gurtovyi, R.I., Tsymbal, L.V., Shova, S. et al. Spectral Characteristics and Electronic Conductivity of Composites Obtained by Reaction of Iodine Vapor with Isostructural Zinc- and Nickel-Containing Metal–Organic Frameworks. Theor Exp Chem 52, 310–317 (2016). https://doi.org/10.1007/s11237-016-9483-5

Download citation

Key words

  • coordination polymers
  • diphenyldicarboxylate
  • oxybisbenzoate
  • zinc(II)
  • nickel(II)
  • nickel(III)
  • iodine
  • composites
  • electronic conductivity