Advertisement

Theoretical and Experimental Chemistry

, Volume 52, Issue 2, pp 119–122 | Cite as

Effect of Co, Ce, and La Oxides as Modifying Additives on the Activity of an NiO/ γ-Al2O3 Catalyst in the Oxidation of Methane to Give Synthesis Gas

  • K. Dossumov
  • G. Ye. Yergazieva
  • L. K. Myltykbaieva
  • N. A. Asanov
Article

A study was carried out on the effect of Co, Ce, and La oxides as modifying additives on the activity of an NiO/\( \gamma \)-Al2O3 catalyst in the partial oxidation of methane. The introduction of cerium and lanthanum oxides enhances the resistance of the catalyst to coking. The increase in the activity of the lanthanum-modified catalyst is related to a lower temperature required for its reduction and increased dispersion of the metallic nickel particles.

Key words

methane oxidation synthesis gas nickel catalyst modifying additives cobalt oxide cerium oxide lanthanum oxide 

Notes

This work was carried out with a grant from the Ministry of Education and Science of the Republic of Kazakhstan. The authors express their gratitude to Professor H. Kurokawa and E.Tulebayev for assistance in the physicochemical investigation of these samples.

References

  1. 1.
    M. Dixit, A. Menon, R. Baruah, et al., React. Kinet. Mech. Cat., 115, 611-624 (2015).CrossRefGoogle Scholar
  2. 2.
    B. Valle, B. Aramburu, A. Remiro, et al., Appl. Catal. B, 147, 402-410 (2014).CrossRefGoogle Scholar
  3. 3.
    Y. Benguerba, L. Dehimi, M. Virginie, et al., React. Kinet. Mech. Cat., 114, 109-119 (2015).CrossRefGoogle Scholar
  4. 4.
    Y. Zeng, H. Ma, H. Zhang, and W. Ying, Int. J. Chem., Nucl., Mater., Metallurg. Eng., 8, 624-628 (2014).Google Scholar
  5. 5.
    Y. Wang, J. Peng, Ch. Zhou, et al., Int. J. Hydrogen Energy, 39, 778-787 (2014).CrossRefGoogle Scholar
  6. 6.
    K. Dossumov, G. E. Yergazyieva, L. K. Myltykbayeva, et al., Coke Chemistry, 58, No. 5, 178-183 (2015).CrossRefGoogle Scholar
  7. 7.
    T. P. Maniecki, K. Bawolak, P. Mierczyski, et al., Kinet. Catal., 52, 711-715 (2011).CrossRefGoogle Scholar
  8. 8.
    H.-T.Wang, Z.-H. Li, and S.-X. Tian, React. Kinet. Catal. Lett., 83, 245-252 (2004).CrossRefGoogle Scholar
  9. 9.
    T. N. Gartman, F. S. Sovetin, E. A. Borovkova, et al., Petrol. Chem., 55, 455-461 (2015).CrossRefGoogle Scholar
  10. 10.
    C. Campos, P. Osorio-Vargas, N. Flores-Gonzales, et al., Catal. Lett., 146, 433-441 (2016).CrossRefGoogle Scholar
  11. 11.
    A. M. Garrido Pedrosa, M. J. B. Souza, D. M. A. Melo, et al., J. Thermal Anal. Calorim., 79, 439-443 (2005).CrossRefGoogle Scholar
  12. 12.
    S. M. de Lima, M. A. Pena, L. G. Fierro, et al., Catal. Lett., 124, 195-203 (2008).CrossRefGoogle Scholar
  13. 13.
    S. Pengpanich, V. Meeyoo, and T. Rirksomboon, Catal. Today, 93-95, 95-105 (2004).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • K. Dossumov
    • 1
  • G. Ye. Yergazieva
    • 2
  • L. K. Myltykbaieva
    • 2
  • N. A. Asanov
    • 2
  1. 1.Center of Physical and Chemical Methods of Investigation and Analysis of the al-Farabi Kazakh National UniversityAlmatyRepublic of Kazakhstan
  2. 2.Institute of Combustion ProblemsAlmatyRepublic of Kazakhstan

Personalised recommendations