Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Photoelectrochemical Characteristics of Solar Cell Based on FTO/ZnO/CdS (Photoanode) and FTO/ZnO/Cu x S (Counter Electrode) Heterostructures Formed by Photocatalytic Methods

  • 104 Accesses

  • 5 Citations

It was established that a solar cell based on FTO/ZnO/CdS (photoanode sensitive to visible light) and FTO/ZnO/Cu x S (counter electrode) heterostructures, formed by photocatalytic methods, is considerably more efficient for the conversion of visible light energy (η = 3.5 %) than an analogous cell based on electrodes produced by traditional methods under dark conditions (η = 1.5%). The reasons for the enhanced activity of the first type of cell are both the more efficient electron transfer across the ZnO/CdS interface and the high electrocatalytic activity of the counter electrode toward the S2–/S0 redox pair.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    M. Grätzel, Nature, 414, No. 6861, 338-344 (2001).

  2. 2.

    J. A. Anta, E. Guillen, and R. Tena-Zaera, J. Phys. Chem. C, 116, No. 21, 11413-11425 (2012).

  3. 3.

    S. Shi, Y. Li, X. Li, and H. Wang, Mater. Horiz., 2, 378-405 (2015).

  4. 4.

    G. Hodes, J. Phys. Chem. C, 112, No. 46, 17778-17787 (2008).

  5. 5.

    P. V. Kamat, J. Phys. Chem. C, 112, No. 48, 18737-18753 (2008).

  6. 6.

    P. V. Kamat, K. Tvrdy, D. R. Baker, and J. G. Radich, Chem. Rev., 110, No. 11, 6664-6688 (2010).

  7. 7.

    S. Rühle, M. Shalom, and A. Zaban, ChemPhysChem, 11, No. 11, 2290-2304 (2010).

  8. 8.

    P. V. Kamat, J. Phys. Chem. Lett. 4, No. 6, 908-918 (2013).

  9. 9.

    Z. Yang, C.-Y. Chen, P. Roy, H.-T. Chang, Chem. Commun., 47, No. 34, 9561-9571 (2011).

  10. 10.

    G. Hodes and J. Manassen, J. Electrochem. Soc., 127, No. 3, 544-549 (1980).

  11. 11.

    H. Tada, M. Fujishima, and H. Kobayashi, Chem. Soc. Rev., 40, No. 7, 4232-4243 (2011).

  12. 12.

    Y. Jin-nouchi, S.-I. Naya, and H. Tada, J. Phys. Chem. C, 114, No. 39, 16837-16842 (2010).

  13. 13.

    K. Nagasuna, T. Akita, M. Fujishima, and H. Tada, Langmuir, 27, No. 11, 7294-7300 (2011).

  14. 14.

    H. Hu, J. Ding, S. Zhang, et al., Nanoscale Res. Lett., 8, 10 (2013).

  15. 15.

    A. V. Kozytskiy, A. L. Stroyuk, S. Ya. Kuchmy, et al., Teor. Éksp. Khim., 49, No. 3, 153-158 (2013). [Theor. Exp. Chem., 49, No. 3, 165-171 (2013) (English translation.)]

  16. 16.

    A. V. Kozytskiy, O. L. Stroyuk, M. A. Skoryk, et al., J. Photochem. Photobiol. A, 303/304, 8-16 (2015).

  17. 17.

    A. V. Kozytskiy, O. L. Stroyuk, M. A. Skoryk, and S. Ya. Kuchmiy, Photochem. Photobiol. Sci., 14, No. 5, 942-947 (2015).

  18. 18.

    A. V. Kozytskiy, O. L. Stroyuk, A. Ya. Breslavskiy, et al., Teor. Éksp. Khim., 49, No. 4, 199-205 (2013). [Theor. Exp. Chem., 49, No. 4, 213-218 (2013) (English translation).]

  19. 19.

    A. V. Kozytskiy, A. L. Stroyuk, S. Ya. Kuchmy, et al., Teor. Éksp. Khim., 48, No. 5, 308-314 (2012). [Theor. Exp. Chem., 48, No. 5, 331-337 (2012) (English translation).]

  20. 20.

    M. Malashchonak, E. A. Streltsov, A. Mazanik, et al., Thin Solid Films, 589, 145-152 (2015).

  21. 21.

    A. L. Stroyuk, S. Ya. Kuchmii, M. A. Zhukovskii, et al., Teor. Éksp. Khim., 45, No. 5, 289-294 (2009). [Theor. Exp. Chem., 45, No. 5, 302-307 (2009) (English translation).]

  22. 22.

    V. V. Shvalagin, A. L. Stroyuk, I. E. Kotenko, and S. Ya. Kuchmii, Teor. Éksp. Khim., 43, No. 4, 215-219 (2007). [Theor. Exp. Chem., 43, No. 4, 229-234 (2007) (English translation).]

  23. 23.

    A. L. Stroyuk, V. V. Shvalagin, A. E. Raevskaya, et al., Teor. Éksp. Khim., 44, No. 4, 199-220 (2008). [Theor. Exp. Chem., 44, No. 4, 205-231 (2008) (English translation).]

  24. 24.

    A. V. Kozytskiy, O. L. Stroyuk, S. Ya. Kuchmiy, et al., J. Mater. Sci., 48, No. 21, 7764-7773 (2013).

  25. 25.

    G. Hodes, J. Phys. Chem. Lett., 3, No. 9, 1208-1213 (2012).

Download references

Author information

Correspondence to A. L. Stroyuk.

Additional information

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 51, No. 4, pp. 199-205, July-August, 2015.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kozytskiy, A.V., Stroyuk, A.L. & Kuchmy, S.Y. Photoelectrochemical Characteristics of Solar Cell Based on FTO/ZnO/CdS (Photoanode) and FTO/ZnO/Cu x S (Counter Electrode) Heterostructures Formed by Photocatalytic Methods. Theor Exp Chem 51, 203–209 (2015). https://doi.org/10.1007/s11237-015-9417-7

Download citation

Key words

  • photocatalysis
  • solar energy conversion
  • photodeposition
  • cadmium sulfide
  • zinc oxide
  • copper sulfide