Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Nanocomposites of Two-Dimensional Molybdenum and Tungsten Dichalcogenides with Metal Particles: Preparation and Prospects for Application

  • 522 Accesses

  • 9 Citations

Literature data related to methods for the preparation, structure, electronic characteristics, and functional properties of composites consisting of nanosheets of layered dichalcogenides with metal nanoparticles have been analyzed. Prospects are discussed for the use of such materials in catalysis and for sensing as well as for construction of various other electronic devices.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    S. Z. Butler, S. M. Hollen, L. Cao, et al., ACS Nano, 7, No. 4, 2898-2926 (2013).

  2. 2.

    R. Tenne, Chem. Eur. J., 8, No. 23, 5297-5304 (2002).

  3. 3.

    L. Rapoport, N. Fleischerb, and R. Tenne, J. Mater. Chem., 15, No. 18, 1782-1788 (2005).

  4. 4.

    W. Shi, R. W. Hughes, S. J. Denholme, and D. H. Gregory, CrystEngComm, 12, No. 3, 641-659 (2010).

  5. 5.

    M.-R. Gao, Y.-F. Xu, J. Jiang, and S.-H. Yu, Chem. Soc. Rev., 42, No. 7, 2986-3017 (2013).

  6. 6.

    K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Science, 306, No. 5696, 666-669 (2004).

  7. 7.

    C. N. R. Rao and A. Nag, Eur. J. Inorg. Chem., No. 27, 4244-4250 (2010).

  8. 8.

    M. Xu, T. Liang, M. Shi, and H. Chen, Chem. Rev., 113, No. 5, 3766-3798 (2013).

  9. 9.

    X. Song, T. Liang, and H. Zeng, J. Mater. Chem. C, 1, No. 17, 2952-2969 (2013).

  10. 10.

    Y. Jing, Z. Zhou, C. R. Cabrera, and Z. Chen, J. Mater. Chem. A, 2, No. 31, 12104-12122 (2014).

  11. 11.

    C. N. R. Rao, K. Gopalakrishnan, and U. Maitra, ACS Appl. Mater. Interfaces, 7, No. 15, 7809-7832 (2015).

  12. 12.

    M. Chhowalla, H. S. Shin, G. Eda, et al., Nat. Chem., 5, No. 4, 263-275 (2013).

  13. 13.

    T. Heine, Accounts Chem. Res., 48, No. 1, 65-72 (2015).

  14. 14.

    J. A. Wilson and A. D. Yoffe, Adv. Phys., 18, No. 1, 193-335 (1969).

  15. 15.

    R. Lv, J. A. Robinson, R. E. Schaak, et al., Accounts Chem. Res., 48, No. 1, 56-64 (2015).

  16. 16.

    A. Kuc and T. Heine, Chem. Soc. Rev., 44, No. 9, 2603-2614 (2015).

  17. 17.

    G.-B. Liu, D. Xiao, Y. Yao, et al., Chem. Soc. Rev., 44, No. 9, 2643-2663 (2015).

  18. 18.

    Q. H. Wang, K. Kalantar-Zadeh, A. Kis, et al., Nature Nanotechnol., 7, No. 11, 699-712 (2012).

  19. 19.

    S. Balendhran, S. Walia, H. Nili, et al., Adv. Funct. Mater., 23, No. 32, 3952-3970 (2013).

  20. 20.

    C. N. R. Rao, H. S. S. Ramakrishna Matte, and U. Maitra, Angew. Chem. Int. Ed., 52, No. 50, 13162-13185 (2013).

  21. 21.

    X. Huang, Z. Zeng, and H. Zhang, Chem. Soc. Rev., 42, No. 5, 1934-1946 (2013).

  22. 22.

    R. Ganatra and Q. Zhang, ACS Nano, 8, No. 5, 4074-4099 (2014).

  23. 23.

    C. N. R. Rao, U. Maitra, and U. V. Waghmare, Chem. Phys. Lett., 609, 172-183 (2014).

  24. 24.

    H. Wang, H. Feng, and J. Li, Small, 10, No. 11, 2165-2181 (2014).

  25. 25.

    W. Zhao, R. M. Ribeiro, and G. Eda, Accounts Chem. Res., 48, No. 1, 91-99 (2015).

  26. 26.

    H. Zeng and X. Cui, Chem. Soc. Rev., 44, No. 9, 2629-2642 (2015).

  27. 27.

    M. A. Pimenta, E. del Corro, B. R. Carvalho, et al., Accounts Chem. Res., 48, No. 1, 41-47 (2015).

  28. 28.

    X. Zhang, X.-F. Qiao, W. Shi, et al., Chem. Soc. Rev., 44, No. 9, 2757-2785 (2015).

  29. 29.

    H. Wang, H. Yuan, S. S. Hong, et al., Chem. Soc. Rev., 44, No. 9, 2664-2680 (2015).

  30. 30.

    D. Voiry, A. Mohite, and M. Chhowalla, Chem. Soc. Rev., 44, No. 9, 2702-2712 (2015).

  31. 31.

    P. C. K. Vesborg, B. Seger, and I. Chorkendorff, J. Phys. Chem. Lett., 6, No. 6, 951-957 (2015).

  32. 32.

    F. Feng, J. Wu, C. Wu, and Y. Xie, Small, 11, No. 6, 654-666 (2015).

  33. 33.

    S. Najmaei, J. Yuan, J. Zhang, et al., Accounts Chem. Res., 48, No. 1, 31-40 (2015).

  34. 34.

    X. Zou and B. I. Yakobson, Accounts Chem. Res., 48, No. 1, 73-80 (2015).

  35. 35.

    Y. Sun, S. Gao, F. Lei, and Y. Xie, Chem. Soc. Rev., 44, No. 3, 623-636 (2015).

  36. 36.

    Y. Guo, K. Xu, C. Wu, et al., Chem. Soc. Rev., 44, No. 3, 637-646 (2015).

  37. 37.

    D. Jariwala, V. K. Sangwan, L. J. Lauhon, et al., ACS Nano, 8, No. 2, 1102-1120 (2014).

  38. 38.

    H. Yuan, H. Wang, and Y. Cui, Accounts Chem. Res., 48, No. 1, 81-90 (2015).

  39. 39.

    D. Lembke, S. Bertolazzi, and A. Kis, Accounts Chem. Res., 48, No. 1, 100-110 (2015).

  40. 40.

    M. Buscema, J. O. Island, D. J. Groenendijk, et al., Chem. Soc. Rev., 44, No. 11, 3691-3718 (2015).

  41. 41.

    C. Tan, Z. Liu, W. Huang, and H. Zhang, Chem. Soc. Rev., 44, No. 9, 2615-2628 (2015).

  42. 42.

    Z. Sun and H. Chang, ACS Nano, 8, No. 5, 4133-4156 (2014).

  43. 43.

    Y. Min, G. D. Moon, C.-E. Kim, et al., J. Mater. Chem. C, 2, No. 31, 6222-6248 (2014).

  44. 44.

    Y. Kim, K.-H. Ha, S. M. Oh, and K. T. Lee, Chem. Eur. J., 20, No. 38, 11980-11992 (2014).

  45. 45.

    M. Pumera, Z. Sofer, and A. Ambrosi, J. Mater. Chem. A, 2, No. 24, 8981-8987 (2014).

  46. 46.

    J. L. Gunjakar, I. Y. Kim, J. M. Lee, et al., J. Phys. Chem. C, 118, No. 8, 3847-3863 (2014).

  47. 47.

    Y. Chen, C. Tan, H. Zhang, and L. Wang, Chem. Soc. Rev., 44, No. 9, 2681-2701 (2015).

  48. 48.

    J. Yang and H. S. Shin, J. Mater. Chem. A, 2, No. 17, 5979-5985 (2014).

  49. 49.

    A. K. Singh, K. Mathew, H. L. Zhuang, and R. G. Hennig, J. Phys. Chem. Lett., 6, No. 6, 1087-1098 (2015).

  50. 50.

    H. Li, J. Wu, Z. Yin, and H. Zhang, Accounts Chem. Res., 47, No. 4, 1067-1075 (2014).

  51. 51.

    Q. Ji, Y. Zhang, Y. Zhang, and Z. Liu, Chem. Soc. Rev., 44, No. 9, 2587-2602 (2015).

  52. 52.

    Y. Shi, H. Li, and L.-J. Li, Chem. Soc. Rev., 44, No. 9, 2744-2756 (2015).

  53. 53.

    O. Yu. Posudievsky, O. A. Khazieieva, V. V. Cherepanov, et al., J. Mater. Chem. C, 1, No. 39, 6411-6415 (2013).

  54. 54.

    E. P. Nguyen, B. J. Carey, T. Daeneke, et al., Chem. Mater., 27, No. 1, 53-59 (2015).

  55. 55.

    A. K. Geim and I. V. Grigorieva, Nature, 499, No. 7459 (2013).

  56. 56.

    H. Lim, S. I. Yoon, G. Kim, et al., Chem. Mater., 26, No. 17, 4891-4903 (2014).

  57. 57.

    C. Tan and H. Zhang, Chem. Soc. Rev., 44, No. 9, 2713-2731 (2015).

  58. 58.

    U. Banin, Y. Ben-Shahar, and K. Vinokurov, Chem. Mater., 26, No. 1, 97-110 (2014).

  59. 59.

    J. Sun and Y. Jin, J. Mater. Chem. C, 2, No. 38, 8000-8011 (2014).

  60. 60.

    H. Cheng, K. Fuku, Y. Kuwahara, et al., J. Mater. Chem. A, 3, No. 10, 5244-5258 (2015).

  61. 61.

    J. Suh, T.-E. Park, D.-Y. Lim, et al., Nano Lett., 14, No. 12, 6976-6982 (2014).

  62. 62.

    O. Rastogi, S. Kumar, S. Bhowmick, et al., J. Phys. Chem., 118, No. 51, 30309-30314 (2014).

  63. 63.

    H. Fang, M. Tosun, G. Seol, et al., Nano Lett., 13, No. 5, 1991-1995 (2013).

  64. 64.

    H. Shu, P. Luo, P. Liang, et al., ACS Appl. Mater. Interfaces, 7, No. 14, 7534-7541 (2015).

  65. 65.

    J. Suh, T.-E. Park, D.-Y. Lin, et al., Nano Lett., 14, No. 12, 6976-6982 (2014).

  66. 66.

    Y.-C. Lin, D. O. Dumcenco, H.-P. Komsa, et al., Adv. Mater., 26, No. 18, 2857-2861 (2014).

  67. 67.

    B. Li, L. Huang, M. Zhong, et al., ACS Nano, 9, No. 2, 1257-1262 (2015).

  68. 68.

    Y. Wang, J. Z. Ou, A. F. Chrimes, et al., Nano Lett., 15, No. 2, 883-890 (2015).

  69. 69.

    D. J. Lewis, A. A. Tedstone, X. L. Zhong, et al., Chem. Mater., 27, No. 4, 1367-1374 (2015).

  70. 70.

    I. Popov, G. Seifert, and D. Tomanek, Phys. Rev. Lett., 108, No. 15, 156802 (2012).

  71. 71.

    W. Chen, E. J. G. Santos, W. G. Zhu, et al., Nano Lett., 13, No. 2, 509-514 (2013).

  72. 72.

    W. Zhang, M.-H. Chiu, C.-H. Chen, et al., ACS Nano, 8, No. 8, 8653-8661 (2014).

  73. 73.

    H. Yuan, G. Cheng, L. You, et al., ACS Appl. Mater. Interfaces, 7, No. 2, 1180-1187 (2015).

  74. 74.

    W. S. Leong, X. Luo, Y. Li, et al., ACS Nano, 9, No. 1, 869-877 (2015).

  75. 75.

    H. Yamaguchi, J.-C. Blancon, R. Kappera, et al., ACS Nano, 9, No. 1, 840-849 (2015).

  76. 76.

    Q. Chen, Y. Ouyang, S. Yuan, et al., ACS Appl. Mater. Interfaces, 6, No. 19, 16835-16840 (2014).

  77. 77.

    X. Chu, G. Yao, A. T. S. Wee, and X.-S. Wang, Nanotechnology, 23, No. 37, 375603 (2012).

  78. 78.

    T. W. Scharf, R. S. Goeke, P. G. Kotula, and S. V. Prasad, ACS Appl. Mater. Interfaces, 5, No. 22, 11762-11767 (2013).

  79. 79.

    C. Gong, C. Huang, J. Miller, et al., ACS Nano, 7, No. 12, 11350-11357 (2013).

  80. 80.

    W. A. Saidi, Cryst. Growth Des., 15, No. 2, 642-652 (2015).

  81. 81.

    B. Lee, J. Park, G. H. Han, et al., Nano Lett., 15, No. 5, 3646-3653 (2015).

  82. 82.

    S. Butun, S. Tongay, and K. Aydin, Nano Lett., 15, No. 4, 2700-2704 (2015).

  83. 83.

    J. Miao, W. Hu, Y. Jing, et al., Small, 11, No. 20, 2392-2398 (2015).

  84. 84.

    S. Najmaei, A. Mlayah, A. Arbouet, et al., ACS Nano, 8, No. 12, 12682-12689 (2014).

  85. 85.

    D. Sarkar, X. Xie, J. Kang, et al., Nano Lett., 15, No. 5, 2852-2862 (2015).

  86. 86.

    A. M. van der Zande, P. Y. Huang, D. A. Chenet, et al., Nat. Mater., 12, No. 6, 554-561 (2013).

  87. 87.

    Q. Ji, Y. Zhang, T. Gao, et al., Nano Lett., 13, No. 8, 3870-3877 (2013).

  88. 88.

    Y. Zhang, Q. Ji, J. Ju, et al., ACS Nano, 7, No. 10, 8963-8971 (2013).

  89. 89.

    Y. Zhang, Q. Ji, G.-F. Han, et al., Nano Lett., 8, No. 8, 8617-8624 (2014).

  90. 90.

    J. Shi, D. Ma, G.-F. Han, et al., Nano Lett., 8, No. 10, 10196-10204 (2014).

  91. 91.

    J. Shi, Y. Yang, Y. Zhang, et al., Adv. Funct. Mater., 25, No. 6, 842-849 (2015).

  92. 92.

    J. Shi, X. Zhang, D. Ma, et al., ACS Nano, 9, No. 4, 4017-4025 (2015).

  93. 93.

    Y. Tan, P. Liu, L. Chen, et al., Adv. Mater., 26, No. 47, 8023-8028 (2014).

  94. 94.

    D. Voiry, H. Yamaguchi, J. Li, et al., Nat. Mater., 12, No. 9, 850-855 (2013).

  95. 95.

    Y. Xi, M. I. Serna, L. Cheng, et al., J. Mater. Chem. C, 3, No. 16, 3842-3847 (2015).

  96. 96.

    C. Shahar, R. Levi, S. R. Cohen, and R. Tenne, J. Phys. Chem. Lett., 1, No. 2, 540-543 (2010).

  97. 97.

    J. K. Sahoo, M. N. Tahir, F. Hoshyargar, et al., Angew. Chem. Int. Ed., 50, No. 41, 12271-12275 (2011).

  98. 98.

    J. Lin, H. Li, H. Zhang, and W. Chen, Appl. Phys. Lett., 102, No. 20, 203109 (2013).

  99. 99.

    X. Yang, W. Liu, M. Xiong, et al., J. Mater. Chem. A, 2, No. 36, 14798-14806 (2014).

  100. 100.

    Y.-T. Liu, Z.-Q. Duan, X.-M. Xie, and X.-Y. Ye, Chem. Commun., 49, No. 16, 1642-1644 (2013).

  101. 101.

    R. Patakfalvi, D. Diaz, P. Santiago-Jacinto, et al., J. Phys. Chem. C, 111, No. 14, 5331-5336 (2007).

  102. 102.

    F. Cheng, J. Chen, and X. Gou, Adv. Mater., 18, No. 19, 2561-2564 (2006).

  103. 103.

    B. Govinda Rao, H. S. S. R. Matte, and C. N. R. Rao, J. Clust. Sci., 23, No. 3, 929-937 (2006).

  104. 104.

    X. Huang, Z. Zeng, S. Bao, et al., Nat. Commun., 4, 1444 (2013).

  105. 105.

    J. Zhao, Z. Zhang, S. Yang, et al., J. Alloys Comp., 559, 87-91 (2013).

  106. 106.

    T. S. Sreeprasad, P. Nguyen, N. Kim, and V. Berry, Nano Lett., 13, No. 9, 4434-4441 (2013).

  107. 107.

    X. Huang, B. Zheng, Z. Liu, et al., ACS Nano, 8, No. 8, 8695-8701 (2014).

  108. 108.

    L. Yang, D. Zhong, J. Zhang, et al., ACS Nano, 8, No. 7, 6979-6985 (2014).

  109. 109.

    Z. Yin, B. Chen, M. Bosman, et al., Small, 10, No. 17, 3537-3543 (2014).

  110. 110.

    X. Hong, J. Liu, B. Zheng, et al., Adv. Mater., 26, No. 36, 6250-6254 (2014).

  111. 111.

    L. Yuwen, F. Xu, B. Xue, et al., Nanoscale, 6, No. 11, 5762-5769 (2014).

  112. 112.

    L. Zhou, B. He, Y. Yang, and Y. He, RCS Adv., 4, No. 61, 32570-32578 (2014).

  113. 113.

    Z. Cheng, B. He, and L. Zhou, J. Mater. Chem. A, 3, No. 3, 1042-1048 (2015).

  114. 114.

    J. Kim, S. Byun, A. J. Smith, et al., J. Phys. Chem. Lett., 4, No. 8, 1227-1232 (2013).

  115. 115.

    Y. Shi, J.-K. Huang, L. Jin, et al., Sci. Rep., 3, 1839 (2013).

  116. 116.

    S. Su, H. Sun, F. Xu, et al., Microchim. Acta, 181, 1497-1503 (2014).

  117. 117.

    S. Su, C. Zhang, L. Yuwen, et al., ACS Appl. Mater. Interfaces, 6, No. 21, 18735-18741 (2014).

  118. 118.

    A. V. Barna, L. V. Tsymbal, Ya. D. Lampeka, and I. E. Kotenko, Teor. Éksp. Khim., 50, No. 2, 108-112 (2014). [Theor. Exp. Chem., 50, No. 2, 110-114 (2014) (English translation).]

  119. 119.

    L. V. Tsymbal and Ya. D. Lampeka, Teor. Éksp. Khim., 51, No. 2, 100-105 (2015). [Theor. Exp. Chem., 51, No. 2, 109-114 (2015) (English translation).]

  120. 120.

    A. Yu. Polyakov, L. Yadgarov, R. Popovitz-Biro, et al., J. Phys. Chem. C, 118, No. 4, 2161-2169 (2014).

  121. 121.

    J. Lu, J. H. Lu, H. Liu, et al., Small, 11, No. 15, 1792-1800 (2015).

  122. 122.

    T. Daeneke, B. J. Carey, A. F. Chrimes, et al., J. Mater. Chem. C, 3, No. 18, 4771-4778 (2015).

  123. 123.

    Y. Yang, T. Liu, L. Cheng, et al., ACS Appl. Mater. Interfaces, 7, No. 14, 7526-7533 (2015).

  124. 124.

    J. V. Lauritsen, M. Nyberg, J. K. Nørskov, et al., J. Catal., 224, No. 1, 94-106 (2004).

  125. 125.

    B. G. Rao, H. S. S. R. Matte, P. Chaturbedy, and C. N. R. Rao, ChemPlusChem, 78, No. 5, 419-422 (2013).

  126. 126.

    Y. Tsverin, R. Popovitz-Biro, Y. Feldman, et al., Mater. Res. Bull., 47, No. 7, 1653-1660 (2012).

  127. 127.

    X. Zhong, H. Yang, S. Guo, et al., J. Mater. Chem., 22, No. 28, 13925-13927 (2012).

  128. 128.

    Z. Y. Zeng, C. L. Tan, X. Huang, et al., Energy Environ. Sci., 7, No. 2, 797-803 (2014).

  129. 129.

    W. J. Zhou, Z. Y. Yin, Y. P. Du, et al., Small, 9, No. 1, 140-147 (2013).

  130. 130.

    K. Chang, Z. W. Mei, T. Wang, et al., ACS Nano, 8, No. 7, 7078-7087 (2014).

  131. 131.

    S. Su, H. F. Sun, F. Xu, et al., Electroanalysis, 25, No. 11, 2523-2529 (2013).

  132. 132.

    X. H. Xia, Z. X. Zheng, Y. Zhang, et al., Sensors Actuators, 192, 42-50 (2014).

  133. 133.

    S. Y. Baik, Y. J. Cho, Y. R. Lim, et al., ACS Nano, 6, No. 3, 2459-2470 (2012).

Download references

The authors express their gratitude to Academician V. D. Pokhodenko of the National Academy of Sciences of Ukraine for initiating and constant support of the study of this new and extremely interesting class of two-dimensional nanomaterials based on transition metal dichalcogenides. This work was carried out with partial financial support from the National Academy of Sciences of Ukraine within the scope of a targeted complex program of fundamental investigations “Fundamental problems of creation of new substances and materials of chemical production.”

Author information

Correspondence to Ya. D. Lampeka.

Additional information

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 51, No. 3, pp. 133-155, May-June, 2015.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lampeka, Y.D., Tsymbal, L.V. Nanocomposites of Two-Dimensional Molybdenum and Tungsten Dichalcogenides with Metal Particles: Preparation and Prospects for Application. Theor Exp Chem 51, 141–162 (2015). https://doi.org/10.1007/s11237-015-9410-1

Download citation

Key words

  • composite materials
  • layered substances
  • molybdenum(IV) and tungsten(IV) dichalcogenides
  • metal nanoparticles