Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Graphene Oxide Composites with Silver Nanoparticles: Photochemical Formation and Electrocatalytic Activity in the Oxidation of Methanol and Formaldehyde

  • 195 Accesses

  • 5 Citations

The photolysis of AgCl nanoparticles stabilized in aqueous solution by graphene oxide or photo reduced graphene oxide using visible light gave nanocomposites containing silver nanoparticles with mean diameter 25-30 nm. These composites have electrocatalytic activity in the oxidation of methanol and formaldehyde in alkaline media. The oxidation of formaldehyde occurs prior to the electrochemical formation of the oxide phase on the silver nanoparticle surface, while the oxidation of methanol occurs after the electrochemical formation of the oxide phase.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    D. Chen, L. Tang, and L. Li, Chem. Soc. Rev., 39, No. 8, 3157-3180 (2010).

  2. 2.

    Z. Liu, W. Xu, J. Fang, et al., Appl. Surface Sci., 259, 441-447 (2012).

  3. 3.

    X. An and J. C. Yu, RSC Adv., 1, No. 8, 1426-1434 (2011).

  4. 4.

    Y. H. Ng, I. V. Lightcap, K. Goodwin, et al., J. Phys. Chem. Lett., 1, No.15, 2222-2227 (2010).

  5. 5.

    S. R. Kim, S. R. Parvez, and M. Chhowalla, Chem. Phys. Lett., 483, Nos. 1-3, 124-127 (2009).

  6. 6.

    R. Y. N. Gengler, K. Spyrou, and P. Rudolf, J. Phys. D, 43, No. 37, 374015 (2010).

  7. 7.

    Y. Shao, J. Wang, M. Engelhard, et al., J. Mater. Chem., 20, No. 35, 743-748 (2010).

  8. 8.

    M. Jin, T. H. Kim, S. C. Lim, et al., Funct. Mater., 21, No. 18, 3496-3501 (2011).

  9. 9.

    V. A. Smirnov, Yu. M. Shul’ga, N. N. Denisov, et al., Ross. Nanotekhnol., 7, Nos. 3/4, 81-86 (2012).

  10. 10.

    S. B. Bon, M. Piccinini, A. Mariani, et al., Diamond Rel. Mater., 20, No. 7, 871-874 (2011).

  11. 11.

    V. A. Smirnov, A. A. Arbuzov, Yu. M. Shul’ga, et al., High Energy Chemistry, 45, No. 1, 57-61 (2011).

  12. 12.

    V. G. Plotnikov, V. A. Smirnov, M. V. Alfimov, et al., High Energy Chemistry, 45, No. 5, 411-415 (2011).

  13. 13.

    L. Feng, G. Gao, P. Huang, et al., Nanoscale Res. Lett., 6, No. 1, 551-561 (2011).

  14. 14.

    L. Lu, J. Liu, Y. Hu, et al., Adv. Mater., 25, No. 9, 1270-1274 (2013).

  15. 15.

    A. Mao, D. Zhang, X. Jin, et al., J. Phys. Chem. Solids, 73, No. 8, 982-986 (2012).

  16. 16.

    T. Kuila, S. Bose, P. Khanra, et al., Biosens. Bioelectron., 26, No. 12, 4637-4648 (2011).

  17. 17.

    M. Avramov-Iviæ, V. Jovanoviæ, G. Vlajniæ, and J. Popiæ, J. Electroanal. Chem., 423, Nos. 1/2, 119-124 (1997).

  18. 18.

    S. Park, Y. Xie, and M. J. Weaver, Langmuir, 18, No. 15, 5792-5798 (2002).

  19. 19.

    C. Tan, X. Huang, and H. Zhang, Mater. Today, 16, Nos. 1/2, 29-36 (2013).

  20. 20.

    C. Roy, E. Bertin, M. H. Martin, et al., Electrocatal., 4, No. 2, 76-84 (2013).

  21. 21.

    G.-W. Yang, G.-Y. Gao, C. Wang, et al., Carbon, 46, No. 5, 747-752 (2008).

  22. 22.

    J. Geng, Y. Bi, and G. Lu, Electrochem. Commun., 11, No. 6, 1255-1258 (2009).

  23. 23.

    D. J. Guo and H. L. Li, Carbon, 43, No. 6, 1259-1264 (2005).

  24. 24.

    A. N. Latyshev, T. V. Voloshina, L. Ya. Kaplun, et al., Zh. Fiz. Khim., 65, No. 6, 1491-1497 (1991).

  25. 25.

    C. Nethravathia, T. Nishaa, N. Ravishankarb, et al., Carbon, 47, No. 8, 2054-2059 (2009).

  26. 26.

    D. R. Dreyer, S. Park, C. W. Bielawski, et al., Chem. Soc. Rev., 39, No. 1, 228-240 (2010).

  27. 27.

    S. Park and R. S. Ruoff, Nature Nanotechnol., 4, No. 4, 217-224 (2009).

  28. 28.

    A. L. Stroyuk, N. S. Andryushina, N. D. Shcherban’, et al., Teor. Éksp. Khim., 48, No. 1, 1-11 (2012). [Theor. Exp. Chem., 48, No. 1, 2-13 (2012) (English translation).]

  29. 29.

    T. H. James, The Theory of the Photographic Process, Macmillan, New York (1977).

  30. 30.

    M. Hepel and M. Tomkiewicz, J. Electrochem. Soc., 131, No. 6, 1288-1294 (1984).

Download references

This work was carried out with the partial financial support of the Basic Research Programs of the National Academy of Sciences of Ukraine “Fundamental problems of nanostructural systems, nanomaterials, and nanotechnology” as well as “Fundamental problems in the creation of new compounds and materials in chemical industry” (Project 14-14). Further support was from the State Basic Research Fund of Ukraine (Project No. F41.2/005). The authors are grateful to N. A. Skorik of Nanomedtech and I. V. Vasilenko of the L. V. Pisarzhevskii Institute of Physical Chemistry, National Academy of Sciences of Ukraine for assistance in obtaining the electron microscopy data.

Author information

Correspondence to A. L. Stroyuk.

Additional information

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 50, No. 3, pp. 152-159, May-June, 2014.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Andryushina, N.S., Stroyuk, A.L., Ustavytska, O.O. et al. Graphene Oxide Composites with Silver Nanoparticles: Photochemical Formation and Electrocatalytic Activity in the Oxidation of Methanol and Formaldehyde. Theor Exp Chem 50, 155–161 (2014). https://doi.org/10.1007/s11237-014-9359-5

Download citation

Keywords

  • graphene oxide
  • silver nanoparticles
  • photolysis
  • electro catalysis
  • AgCl