Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Nanocomposites Based on Aerosil, Vinyl Polymers, and Silver Particles

  • 72 Accesses

Hybrid nanocomposites are obtained by photo-initiated copolymerization of N-vinylpyrrolidone (or acrylic acid) with 3-(trimethoxysilyl)propyl methacrylate, grafted on an Aerosil surface, followed by immobilization of silver nanoparticles. The materials obtained are particles (aggregates) of size 12-17 μm, consisting of silica nanoparticles bonded by a polymer layer in which aggregated silver particles about 17 nm in size are found. The presence of silver nanoparticles in the composites increases their thermal stability.

This is a preview of subscription content, log in to check access.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2


  1. 1.

    G. Kickelbick (ed.), Hybrid Materials: Synthesis, Characterization and Application, Wiley-VCH Verlag, Weinheim (2007).

  2. 2.

    B. Gao, Z. Wang, Q. Liu, and R. Du, Colloids Surfaces B, 79, No. 2, 446-451 (2010).

  3. 3.

    L. Jiang, W. Wang, D. Wu, et al., Mater. Chem. Phys., 104, Nos. 2/3, 230-234 (2007).

  4. 4.

    T. Bala, G. Armstrong, F. Laffir, and R. Thornton, J. Colloid Interface Sci., 356, 395-403 (2011).

  5. 5.

    A. L. Tolstov and O. V. Gres, Teor. Éksp. Khim., 48, No. 6, 331-344 (2012). [Theor. Exp. Chem., 48, No. 6, 353-366 (2012) (English translation).]

  6. 6.

    D. S. Achilleos and M. Vamvakaki, Materials, 3, No. 3, 1981-2026 (2010).

  7. 7.

    R. Reisfeld, T. Saraidarov, and V. Levchenko, Opt. Appl., 38, No. 1, 83-92 (2008).

  8. 8.

    T. Angelova, N. Rangelova, R. Yuryev, et al., Mater. Sci. Eng. C, 32, No. 5, 1241-1246 (2012).

  9. 9.

    S. Siggia and J. G. Hanna, Quantitative Organic Analysis Via Functional Groups, Wiley Australia, Brisbane (1979).

  10. 10.

    G. Charlot, Methods in Analytical Chemistry. Quantitative Inorganic Analysis [Russian translation], Khimiya, Moscow (1965).

  11. 11.

    I. Pastoriza-Santos and L. M. Liz-Marzan, Langmuir, 15, No. 4, 948-951 (1999).

  12. 12.

    C. Peniche, D. Zaldivar, M. Pazos, et al., J. Appl. Polym. Sci., 50, No. 3, 485-493 (1993).

  13. 13.

    S. Dubinsky, G. S. Grader, G. E. Shter, and M. S. Silverstein, Polym. Degrad. Stabil., 86, No. 1, 171-178 (2004).

Download references

We would like to thank colleagues at the multiuser shared equipment centers of the L. V. Pisarzhevskii Institute of Physical Chemistry (National Academy of Sciences of Ukraine) and the M. G. Kholodny Institute of Botany (National Academy of Sciences of Ukraine) for help with the research.

Author information

Correspondence to A. L. Tolstov.

Additional information

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 50, No. 2, pp. 125-129, March-April, 2014.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tolstov, A.L., Matyushov, V.F. Nanocomposites Based on Aerosil, Vinyl Polymers, and Silver Particles. Theor Exp Chem 50, 127–131 (2014). https://doi.org/10.1007/s11237-014-9357-7

Download citation

Key words

  • silicon dioxide
  • polymers
  • silver nanoparticles
  • hybrid materials
  • composites