Theoretical and Experimental Chemistry

, Volume 48, Issue 1, pp 62–71 | Cite as

Photophysical properties of CdSe/ZnS quantum dot–porphyrin surface complexes in aqueous media

  • A. O. Orlova
  • M. S. Gubanova
  • V. G. Maslov
  • A. V. Baranov
  • A. V. Fedorov
  • M. V. Artem’ev

We have studied complexes between CdSe/ZnS quantum dots and metal-free porphyrin molecule in aqueous solution and in human blood plasma. We have established that in aqueous solution, transition of the porphyrin to a stable form occurs 2-5 h after formation of the complexes. We have observed that the porphyrin molecules react with the components of the blood plasma, which hinders direct formation of complexes between them and quantum dots in this medium. When previously prepared complexes between quantum dots and porphyrin molecules are added to the blood plasma, they partially dissociate. In aqueous solutions and in human blood plasma, we observe efficient intracomplex transfer of the photoexcitation energy from the quantum dots to the porphyrin molecules.

Key words

quantum dot metal-free porphyrin complex luminescence human blood plasma energy transfer 


We would like to thank Professor M. L. Gel’fond (Doctor of Medical Sciences, N. N. Petrov Research Institute of Oncology) for providing the human blood plasma. This work was done with the financial support of the Ministry of Education and Science of the Russian Federation (government contracts No. 14.740.11.1366, No. 11.519.11.3020, and No. 11.519.11.3026) and also the Russian Foundation for Basic Research (grants 12-02-01263-a and 12-02-00938-a).


  1. 1.
    D. Bera, L. Qian, T.-K. Tseng, and P. H. Holloway, Materials, 3, 2260-2345 (2010).CrossRefGoogle Scholar
  2. 2.
    Ch. Ingrosso, A. Panniello, R. Comparelli, et al., Materials, 3, 1316-1352 (2010).CrossRefGoogle Scholar
  3. 3.
    V. Maslov, A. Orlova, and A. Baranov, Photosensitizers in Medicine, Environment, and Security, T. Nyokong and V. Ahsen (eds.), Springer, Dordrecht (2012), pp. 355-393.Google Scholar
  4. 4.
    M. F. Frasco and N. Chaniotakis, Sensors, 9, 7266-7286 (2009).CrossRefGoogle Scholar
  5. 5.
    É. I. Zen’kevich, Th. Blaudeck, M. Heidernätsch, et al., Teor. Éksp. Khim., 45, No. 1, 17-26 (2009). [Theor. Exp. Chem., 45, No. 1, 23-34 (2009) (English translation).]CrossRefGoogle Scholar
  6. 6.
    J. Britton, E. Antunes, and T. Nyokong, J. Photochem. Photobiol. A, 210, 1-7 (2010).CrossRefGoogle Scholar
  7. 7.
    S. Dayal, N. Kopidakis, D. C. Olson, et al., Nano Lett., 10, No. 1, 239-242 (2010).CrossRefGoogle Scholar
  8. 8.
    A. O. Orlova, V. G. Maslov, Yu. A. Toporova, et al., Ros. Nanotekhnol., 4, Nos. 11/12, 16-21 (2009).Google Scholar
  9. 9.
    A. V. Baranov, A. O. Orlova, V. G. Maslov, et al., J. Appl. Phys., 108, 074306(1-5) (2010).Google Scholar
  10. 10.
    A. V. Fedorov and A. V. Baranov, Optics of Nanostructures [in Russian], A. V. Fedorov (ed.), Nedra, St. Petersburg (2005).Google Scholar
  11. 11.
    A. V. Fedorov, I. D. Rukhlenko, A. V. Baranov, and S. Yu. Kruchinin, Optical Properties of Semiconductor Quantum Dots [in Russian], Nauka, St. Petersburg (2011).Google Scholar
  12. 12.
    Ch. H. Vannoy, A. J. Tavares, M. Omair Noor, et al., Sensors, 11, No. 10, 9732-9763 (2011).CrossRefGoogle Scholar
  13. 13.
    X. Michalet, F. F. Pinaud, L. A. Bentolila, et al., Science, 307, 538 (2005).CrossRefGoogle Scholar
  14. 14.
    R. Freeman, B. Willner, and I. Willner, J. Phys. Chem. Lett., 2, No. 20, 2667-2677 (2011).CrossRefGoogle Scholar
  15. 15.
    P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulovi, Nano Lett., 7, No. 8, 2196-2200 (2007).CrossRefGoogle Scholar
  16. 16.
    J. Chen, W. Lei, C. Li, et al., Phys. Chem. Chem. Phys., 13, 13182-13184 (2011).CrossRefGoogle Scholar
  17. 17.
    S. D’Souza, E. Antunes, Ch. Litwinski, et al., J. Photochem. Photobiol. A, 220, 11-19 (2011).CrossRefGoogle Scholar
  18. 18.
    Z.-D. Qi, D.-W. Li, P. Jiang, et al., J. Mater. Chem., 21, 2455-2458 (2011).CrossRefGoogle Scholar
  19. 19.
    E. I. Zenkevich, E. I. Sagun, V. N. Knyukshto, et al., J. Phys. Chem. C, 115, 21535-21545 (2011).CrossRefGoogle Scholar
  20. 20.
    A. O. Orlova, V. G. Maslov, I. E. Skaletskaya, and A. V. Baranov, Opt. Spektroskop., 101, No. 4, 616-623 (2006).Google Scholar
  21. 21.
    A. O. Orlova, V. G. Maslov, A. V. Baranov, et al., Opt. Spektroskop., 105, No. 5, 794-800 (2008).Google Scholar
  22. 22.
    A. O. Orlova, V. G. Maslov, A. A. Stepanov, et al., Opt. Spektroskop., 105, No. 8, 889 (2008).CrossRefGoogle Scholar
  23. 23.
    A. O. Orlova, M. S. Gubanova, V. G. Maslov, et al., Opt. Spektroskop., 108, No. 6, 975-982 (2010).Google Scholar
  24. 24.
    A. F. Mironov, Sorovsk. Obrazovat. Zh., 8, 32-40 (1996).Google Scholar
  25. 25.
    V. L. Ermolaev, E. N. Bodunov, E. B. Sveshnikova, and T. A. Shakhverdov, Nonradiative Transfer of Electronic Excitation Energy [in Russian], Nauka, Leningrad (1977).Google Scholar
  26. 26.
    D. V. Talapin, A. L. Rogach, A. Kornowski, et al., Nano Lett., 1, No. 4, 207-211 (2001).CrossRefGoogle Scholar
  27. 27.
    V. G. Maslov, Opt. Spektroskop., 50, No. 6, 1091-1099 (1981).Google Scholar
  28. 28.
    E. Z. Chong, D. R. Matthews, H. D. Summers, et al., J. Biomed. Biotechnol., Article ID 54169, DOI: 10.1155/2007/54169 (2007).

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • A. O. Orlova
    • 1
  • M. S. Gubanova
    • 1
  • V. G. Maslov
    • 1
  • A. V. Baranov
    • 1
  • A. V. Fedorov
    • 1
  • M. V. Artem’ev
    • 2
  1. 1.St. Petersburg National Research University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussian Federation
  2. 2.Institute for Physico-Chemical ProblemsBelarusian State UniversityMinskRepublic of Belarus

Personalised recommendations