Advertisement

Theoretical and Experimental Chemistry

, Volume 47, Issue 6, pp 394–398 | Cite as

Mechanisms for the formation of layered A4B3O12 compounds from coprecipitated hydroxocarbonate and hydroxide systems

  • Yu. A. TitovEmail author
  • N. S. Slobodyanik
  • V. V. Polubinskii
  • V. V. Chumak
Article

We have established and analyzed the sequences of phase transitions in synthesis of layered compounds in the AnBn–1O3n family (\( {\text{A}}_3^{\text{II}}{\text{LnB}}_3^{\text{V}}{{\text{O}}_{{12}}} \)(AII = Ba, Sr, Ln = La, Nd, BV = Nb, Ta) and La4Ti3O12 with n = 4) from coprecipitated hydroxocarbonate and hydroxide systems, including steps involving the formation, solid-phase reaction, or structural rearrangement of intermediates.

Key words

AnBn–1O3n layered compounds formation mechanisms 

References

  1. 1.
    F. Lichtenberg, A. Herrnberger, and K. Wiedenmann, Progr. Solid State Chem., 36, No. 4, 253-387 (2008).CrossRefGoogle Scholar
  2. 2.
    R. E. Schaak and T. E. Mallouk, Chem. Mater., 14, No. 4, 1455-1471 (2002).CrossRefGoogle Scholar
  3. 3.
    V. Berbenni, A. Marini, and G. Bruni, J. Alloys Compounds, 329, Nos. 1/2, 230-238 (2001).CrossRefGoogle Scholar
  4. 4.
    Yu. A. Titov and N. S. Slobodyanik, Teor. Éksp. Khim., 39, No. 6, 357-361 (2003). [Theor. Exp. Chem., 39, No. 6, 369-373 (2003) (English translation).]Google Scholar
  5. 5.
    A. V. Prasadarao, J.-U. Selvara, and S. Komarneni, J. Mater. Res., 10, No. 3, 704-707 (1995).CrossRefGoogle Scholar
  6. 6.
    D. Chen, X. Jiao, and M. Zhang, J. Eur. Ceram. Soc., 20, No. 9, 1261-1265 (2000).CrossRefGoogle Scholar
  7. 7.
    A. V. Novosselov, G. V. Zimina, A. A. Filaretov, et al., Mater. Res. Bull., 36, No. 10, 1789-1798 (2001).CrossRefGoogle Scholar
  8. 8.
    H. D. Nam, I. H. Park, Y. J. Song, and S. B. Desu, Ferroelectrics, 186, Nos. 1-4, 137-140 (1996).CrossRefGoogle Scholar
  9. 9.
    L. Zhang, M. Ji, H. Wang, et al., Mater. Lett., 60, Nos. 25/26, 3100-3103 (2006).CrossRefGoogle Scholar
  10. 10.
    H. Zhang, L. Fang, R. Dronskowski, et al., J. Solid State Chem., 177, No. 11, 4007-4012 (2004).CrossRefGoogle Scholar
  11. 11.
    R. Rawal, A. Feteira, N. C. Hyatt, et al., J. Am. Ceram. Soc., 89, No. 1, 332-335 (2006).CrossRefGoogle Scholar
  12. 12.
    N. Teneze, D. Mercurio, G. Trolliard, and B. Frit, Mater. Res. Bull., 35, No. 10, 1603-1614 (2000).CrossRefGoogle Scholar
  13. 13.
    A. M. Abakumov, R. V. Shpanchenko, E. V. Antipov, et al., J. Solid State Chem., 141, No. 2, 492-499 (1998).CrossRefGoogle Scholar
  14. 14.
    H. Yamada, T. Okawa, Y. Tohdo, and H. Ohsato, J. Eur. Ceram. Soc., 26, Nos. 10/11, 2059-2062 (2006).CrossRefGoogle Scholar
  15. 15.
    Powder Diffraction File 2003: PDF-2, Database Sets 1-89. Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • Yu. A. Titov
    • 1
    Email author
  • N. S. Slobodyanik
    • 1
  • V. V. Polubinskii
    • 1
  • V. V. Chumak
    • 1
  1. 1.Taras Shevchenko National University of KyivKyivUkraine

Personalised recommendations