Advertisement

Modern approaches to the production of carbon materials from vegetable biomass

  • P. M. EletskiiEmail author
  • V. A. Yakovlev
  • V. N. Parmon
Article

Recent trends in methods for the preparation of porous carbon materials (PCM) from vegetable biomass by physical and chemical activation methods are analyzed. Data on the effect of activating agents and also other parameters on the textural characteristics of PCMs were classified. A new direction for the production of PCMs was discovered in the use of high-ash biomass.

Key words

carbon materials vegetable biomass adsorbents steam–gas activation chemical activation 

Notes

The work was carried out with support from the Ministry of Education and Science of the Russian Federation (GK No. 14.740.11.01419, 16.516.11.6049, 16.526.11.6003, and 16.120.11.4805-MK).

References

  1. 1.
    W. Zhang, Fuel Process. Technol., 91, No. 8, 866–876 (2010).CrossRefGoogle Scholar
  2. 2.
    T. Hanaoka, Y. Liua, K. Matsunaga, et al., Fuel Process. Technol., 91, No. 8, 859–865 (2010).CrossRefGoogle Scholar
  3. 3.
    S. G. Zavarukhin, V. A. Yakovlev, V. N. Parmon, et al., Khim. Tekhnol. Topliv Masel, 1, 3–7 (2010).Google Scholar
  4. 4.
    V. O. Dundich and V. A. Yakovlev, Khim. Interes. Ustoichiv. Razvit., 5, 527–532 (2009).Google Scholar
  5. 5.
    M. Snore, P. Myaki-Arvela, and I. L. Simakova, Sverkhkritich. Flyuids: Teor. Prakt., 4, No. 1, 3–17 (2009).Google Scholar
  6. 6.
    V. A. Yakovlev, S. A. Khromova, O. V. Sherstyuk, et al., Catal. Today, 144, Nos. 3/4, 362–366 (2009).CrossRefGoogle Scholar
  7. 7.
    D. C. Elliott, Energy Fuels, 21, No. 3, 1792–1815 (2007).CrossRefGoogle Scholar
  8. 8.
    E. Tomás-Pejó, J. M. Oliva, A. González, et al., Fuel, 88, No. 11, 2142–2147 (2009).CrossRefGoogle Scholar
  9. 9.
    S. D. Varfolomeev, E. N. Efremenko, and L. P. Krylova, Usp. Khim., 79, No. 6, 544–564 (2010).Google Scholar
  10. 10.
    A. Abuadala and I. Dincer, Thermochim. Acta, 507/508, No. 11, 127–134 (2010).CrossRefGoogle Scholar
  11. 11.
    J. Kopyscinski, T. J. Schildhauer, and S. M. A. Biollaz, Fuel, 89, No. 8, 1763–1783 (2010).CrossRefGoogle Scholar
  12. 12.
    X. Tong, Y. Ma, and Y. Li, Appl. Catal. A, 385, Nos. 1/2, 1–13 (2010).Google Scholar
  13. 13.
    J. D. P. Araújo, C. A. Grande, and A. E. Rodrigues, Chem. Eng. Res. Design, 88, No. 8, 1024–1032 (2010).CrossRefGoogle Scholar
  14. 14.
    A. Karthikeyan and N. Sivakumar, Bioresour. Technol., 101, No. 14, 5552–5556 (2010).CrossRefGoogle Scholar
  15. 15.
    T. C. Drage, A. Arenillas, K. M. Smith, et al., Fuel, 86, Nos. 1/2, 22–31 (2007).CrossRefGoogle Scholar
  16. 16.
    A. C. Dillon and M. J. Heben, Appl. Phys. A, 72, No. 2, 133–142 (2001).CrossRefGoogle Scholar
  17. 17.
    V. C. Menon and S. Komarneni, J. Porous Mater., 5, No. 1, 43–58 (1998).CrossRefGoogle Scholar
  18. 18.
    S. Sircar, T. C. Golden, and M. B. Rao, Carbon, 34, No. 1, 1–12 (1996).CrossRefGoogle Scholar
  19. 19.
    M. J. Lázaro, M. E. Gálvez, S. Artal, et al., J. Anal. Appl. Pyrolysis., 78, No. 2, 301–315 (2007).CrossRefGoogle Scholar
  20. 20.
    J. C. Naranjo, A. Córdoba, L. Giraldo, et al., J. Mol. Catal. B, 66, Nos. 1/2, 166–171 (2010).CrossRefGoogle Scholar
  21. 21.
    H. T. Gomes, S. M. Miranda, M. J. Sampaio, et al., Catal. Today, 151, Nos. 1/2, 153–158 (2010).CrossRefGoogle Scholar
  22. 22.
    S. Flandrois and B. Simon, Carbon, 37, No. 2, 165–180 (1999).CrossRefGoogle Scholar
  23. 23.
    K. Shindo, M. Arakawa, and T. Hirai, J. Power Sources, 110, No. 1, 46–51 (2002).CrossRefGoogle Scholar
  24. 24.
    Y. Chen, Y. Zhu, Z. Wang, et al., Adv. Colloid Interface Sci., 163, No. 1, 39–52 (2011).CrossRefGoogle Scholar
  25. 25.
    K. Y. Foo and B. H. Hameed, Adv. Colloid Interface Sci., 152, Nos. 1/2, 39–47 (2009).CrossRefGoogle Scholar
  26. 26.
    G. T.-K. Fey, Ch.-L. Chen, J. Power Sources, 97/98, 47–51 (2001).CrossRefGoogle Scholar
  27. 27.
    G. K. Nikonov, L. F. Burkovskaya, N. A. Artamonova, and G. L. Chelokhsaeva, Gidroliz. Lesokhim. Prom-st’, 7, 18–19 (1990).Google Scholar
  28. 28.
    V. B. Fenelonov, Porous Carbon [in Russian], Inst. Kataliza Sibirsk. Otd. RAS, Novosibirsk (1995).Google Scholar
  29. 29.
    V. B. Fenelonov, Introduction to Physical Chemistry of the Formation of Supramolecular Structure in Adsorbents and Catalysts, Izd. Sibirsk. Otd. RAS, Novosibirsk (2004).Google Scholar
  30. 30.
    T. V. Ryazanova, G. V. Tikhomirova, and I. S. Pochekutov, Ros. Khim. Zhurn., 48, No. 3, 89–94 (2004).Google Scholar
  31. 31.
    F.-Ch. Wu, Ru-L. Tseng, J. Colloid Interface Sci., 294, No. 1, 21–30 (2006).CrossRefGoogle Scholar
  32. 32.
    M. J. Prauchner and F. Rodriguez-Reinoso, Micropor. Mesopor. Mater., 109, Nos. 1–3, 581–584 (2008).CrossRefGoogle Scholar
  33. 33.
    B. H. Hameed and M. I. El-Khaiary, J. Hazard. Mater., 157, Nos. 2/3, 344–351 (2008).CrossRefGoogle Scholar
  34. 34.
    T. Zhang, W. P. Walawender, L. T. Fan, et al., Chem. Eng. J., 105, Nos. 1/2, 53–59 (2004).CrossRefGoogle Scholar
  35. 35.
    A. Macias-García, M. J. Bernalte Garcia, M. A. Díaz-Díez, and A. H. Jiménez, Wood Sci. Technol., 37, No. 5, 385–394 (2004).CrossRefGoogle Scholar
  36. 36.
    A. K. Kercher and D. C. Nagle, Carbon, 41, No. 1, 3–13 (2003).CrossRefGoogle Scholar
  37. 37.
    V. Boonamnuayvitaya, S. Sae-ung, and W. Tanthapanichakoon, Sep. Purif. Technol., 42, No. 2, 159–168 (2005).CrossRefGoogle Scholar
  38. 38.
    J. V. Nabais, P. Carrott, M. M. L. R. Carrott, et al., Bioresour. Technol., 99, No. 15, 7224–7231 (2008).CrossRefGoogle Scholar
  39. 39.
    J. M. Valente Nabais, P. Nunes, P. J. M. Carrott, et al., Fuel Process. Technol., 89, No. 3, 262–268 (2008).CrossRefGoogle Scholar
  40. 40.
    A. Aworn, P. Thiravetyan, and W. Nakbanpote, Colloids Surfaces A, 333, Nos. 1–3, 19–25 (2009).CrossRefGoogle Scholar
  41. 41.
    Ch.-F. Chang, Ch.-Y. Chang, and W.-T. Tsai, J. Colloid Interface Sci., 232, No. 1, 45–49 (2000).CrossRefGoogle Scholar
  42. 42.
    S. Román, J. F. Gonzalez, C. M. Gonzalez-Garcia, and F. Zamora, Fuel Process. Technol., 89, No. 8, 715–720 (2008).CrossRefGoogle Scholar
  43. 43.
    C. A. Toles, W. E. Marshall, L. H. Wartelle, and A. McAloon, Bioresour. Technol., 75, No. 3, 197–203 (2000).CrossRefGoogle Scholar
  44. 44.
    J. Guo and A. C. Lua, J. Colloid Interface Sci., 251, No. 2, 242–247 (2002).CrossRefGoogle Scholar
  45. 45.
    R. M. Suzuki, A. D. Andrade, J. C. Sousa, and M. C. Rollemberg, Bioresour. Technol., 98, No. 10, 1985–1991 (2007).CrossRefGoogle Scholar
  46. 46.
    N. Yoshizawa, K. Maruyama, Y. Yamada, and M. Zielinska-Blajet, Fuel, 79, No. 12, 1461–1466 (2000).CrossRefGoogle Scholar
  47. 47.
    V. S. Petrov, Y. Y. Simkin, and O. K. Krylova, Khim. Interes. Ustoichiv. Razvit., 4, 389–394 (1996).Google Scholar
  48. 48.
    G. V. Plaksin, O. N. Baklanova, V. A. Drozdov, et al., Khim. Interes. Ustoichiv. Razvit., 8, 715–721 (2000).Google Scholar
  49. 49.
    M. A. Ahmad, W. M. A. Wan Daud, and M. K. Aroua, Colloids Surfaces A, 312, Nos. 2/3, 131–135 (2008).CrossRefGoogle Scholar
  50. 50.
    A. Baçaoui, A. Yaacoubi, A. Dahbi, et al., Carbon, 39, No. 3, 425–432 (2001).CrossRefGoogle Scholar
  51. 51.
    P. T. Williams and A. R. Reed, J. Anal. Appl. Pyrolysis, 70, No. 2, 563–577 (2003).CrossRefGoogle Scholar
  52. 52.
    N. Tancredi, N. Medero, F. Möller, et al., J. Colloid Interface Sci., 279, No. 2, 357–363 (2004).CrossRefGoogle Scholar
  53. 53.
    P. Milich, F. Möller, J. Piriz, et al., Sep. Sci. Technol., 37, No. 6, 1453–1467 (2002).CrossRefGoogle Scholar
  54. 54.
    A. D. Simonov, T. I. Mishenko, N. A. Yazykov, and V. N. Parmon, Chem. Sustain. Develop., 11, No. 1, 277–283 (2003).Google Scholar
  55. 55.
    P. M. Eletskii, V. A. Yakovlev, V. V. Kaichev, et al., Kinet. Katal., 49, No. 2, 321–328 (2008).CrossRefGoogle Scholar
  56. 56.
    G. K. Boreskov, Heterogeneous Catalysis [in Russian], Nauka, Moscow (1986).Google Scholar
  57. 57.
    V. A. Borodulya and L. M. Vinogradov, Combustion of Solid Fuel in Fluidized Bed [in Russian], Nauka i Tekhnika, Minsk (1980), pp. 50–69.Google Scholar
  58. 58.
    E. A. Ustinov, V. B. Fenelonov, V. A. Yakovlev, and P. M. Eletskii, Kinet. Katal., 48, No. 4, 629–638 (2007).CrossRefGoogle Scholar
  59. 59.
    D. W. McKee, Fuel, 62, No. 2, 170–175 (1983).CrossRefGoogle Scholar
  60. 60.
    A. M. Youssef, N. R. E. Radwan, I. Abdel-Gawad, and G. A. A. Singer, Colloids Surfaces A, 252, Nos. 2/3, 143–151 (2005).CrossRefGoogle Scholar
  61. 61.
    M. Molina-Sabio and F. Rodríguez-Reinoso, Colloids Surfaces A, 241, Nos. 1–3, 15–25 (2004).CrossRefGoogle Scholar
  62. 62.
    A. M. Youssef, Th. El-Nabarawy, and S. E. Samra, Colloids Surfaces A, 235, Nos. 1–3, 153–163 (2004).CrossRefGoogle Scholar
  63. 63.
    Y. Nakagawa, M. Molina-Sabio, and F. Rodríguez-Reinoso, Micropor. Mesopor. Mater., 103, Nos. 1–3, 29–34 (2007).CrossRefGoogle Scholar
  64. 64.
    F. Rodriguez-Reinoso, Y. Nakagawa, and J. Silvestre-Albero, Micropor. Mesopor. Mater., 115, No. 3, 603–608 (2008).CrossRefGoogle Scholar
  65. 65.
    Zh. Zhu, A. Li, and L. Yan, J. Colloid Interface Sci., 316, No. 2, 628–634 (2007).CrossRefGoogle Scholar
  66. 66.
    A. Ahmadpour and D. D. Do, Carbon, 34, No. 4, 471–476 (1996).CrossRefGoogle Scholar
  67. 67.
    J. S. Macedo, L. Otubo, O. P. Ferreira, et al., Micropor. Mesopor. Mater., 107, No. 3, 276–285 (2008).CrossRefGoogle Scholar
  68. 68.
    Zh. Hu and M. P. Srinivasan, Micropor. Mesopor. Mater., 43, No. 3, 267–275 (2001).CrossRefGoogle Scholar
  69. 69.
    E. Yagmur, M. Ozmak, and Z. Aktas, Fuel, 87, Nos. 15/16, 3278–3285 (2008).CrossRefGoogle Scholar
  70. 70.
    B. S. Girgis, A. A. Attia, and N. A. Fathy, Colloids Surfaces A, 299, Nos. 1–3, 79–87 (2007).CrossRefGoogle Scholar
  71. 71.
    Y. Guo and D. A. Rockstraw, Bioresour. Technol., 98, No. 8, 1513–1521 (2007).CrossRefGoogle Scholar
  72. 72.
    M. Molina-Sabio and F. Rodríguez-Reinoso, Colloids Surfaces A, 241, Nos. 1–3, 15–25 (2004).CrossRefGoogle Scholar
  73. 73.
    A. W. M. Ip, J. P. Barford, and G. McKay, Bioresour. Technol., 99, No. 18, 8909–8916 (2008).CrossRefGoogle Scholar
  74. 74.
    J. Guo and A. Ch. Lua, J. Colloid Interface Sci., 254, No. 2, 227–233 (2002).CrossRefGoogle Scholar
  75. 75.
    F. Zhang, H. Ma, J. Chen, et al., Bioresour. Technol., 99, No. 11, 4803–4808 (2008).CrossRefGoogle Scholar
  76. 76.
    I. A. W. Tan, A. L. Ahmad, and B. H. Hameed, Chem. Eng. J., 137, No. 3, 462–470 (2008).CrossRefGoogle Scholar
  77. 77.
    R.-L. Tseng, J. Colloid Interface Sci., 303, No. 2, 494–502 (2006).CrossRefGoogle Scholar
  78. 78.
    R.-L. Tseng and S.-K. Tseng, J. Colloid Interface Sci., 287, No. 2, 428–437 (2005).CrossRefGoogle Scholar
  79. 79.
    V. Fierro, V. Torné-Fernández, and A. Celzard, Micropor. Mesopor. Mater., 101, No. 3, 419–431 (2007).CrossRefGoogle Scholar
  80. 80.
    G. H. Oh and C. R. Park, Fuel, 81, No. 3, 327–336 (2002).CrossRefGoogle Scholar
  81. 81.
    E. Mora, C. Blanco, J. A. Pajares, et al., J. Colloid Interface Sci., 298, No. 1, 341–347 (2006).CrossRefGoogle Scholar
  82. 82.
    A. N. Wennerberg, “Process for the production of active carbons,” Pat. 3624004 USA, Standard Oil Company (USA), Publ. Nov. 30, 1971.Google Scholar
  83. 83.
    A. N. Wennerberg, T. M. O’Grady, “Active carbon process and composition,” Pat. 4082694 USA, IC B 01J 21/18, C 01 B 31/08, C 01 B 31/12, Standard Oil Company (USA), Publ. Apr. 4, 1978.Google Scholar
  84. 84.
    Ch. N. Barnakov, S. K. Seit-Ablaeva, A. P. Kozlov, et al., “Method for the production of nanostructured carbon material,” Pat. 2206394 Russian Federation, IPC7 B 01 J 20/20, C 01 B 31/12, Applicant and Patent Holder, Institute of Coal and Coal Chemistry, Siberian Branch, Russian Academy of Sciences; G. K. Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, Publ. June 20, 2003.Google Scholar
  85. 85.
    H. Marsh, D. Crawford, T. M. O’Grandy, and A. Wennerberg, Carbon, 20, No. 2, 137–138 (1982).CrossRefGoogle Scholar
  86. 86.
    H. Marsh, D. Crawford, T. M. O’Grandy, and A. Wennerberg, Carbon, 20, No. 5, 419–426 (1982).CrossRefGoogle Scholar
  87. 87.
    H. Marsh, D. S. Yan, T. M. O’Grandy, and A. Wennerberg, Carbon, 22, No. 6, 603–611 (1984).CrossRefGoogle Scholar
  88. 88.
    B. Y. Jibril, R. S. Al-Maamari, G. Hegde, et al., J. Anal. Appl. Pyrolysis, 80, No. 2, 277–282 (2007).CrossRefGoogle Scholar
  89. 89.
    V. Ruiz, C. Blanco, E. Raymundo-Piñero, et al., Electrochim. Acta, 52, No. 15, 4969–4973 (2007).CrossRefGoogle Scholar
  90. 90.
    K. Kierzek, E. Frackowiak, G. Lota, et al., Electrochim. Acta, 49, No. 4, 515–523 (2004).CrossRefGoogle Scholar
  91. 91.
    A. Perrin, A. Celzard, A. Albiniak, et al., Micropor. Mesopor. Mater, 81, Nos. 1–3, 31–40 (2005).CrossRefGoogle Scholar
  92. 92.
    M. Sánchez-Polo and J. Rivera-Utrilla, Appl. Catal. B, 67, Nos. 1/2, 113–120 (2006).Google Scholar
  93. 93.
    L. Zubizarreta, A. Arenillas, J.-P. Pirard, et al., Micropor. Mesopor. Mater., 115, No. 3, 480–490 (2008).CrossRefGoogle Scholar
  94. 94.
    M. J. B. Evans, E. Halliop, and J. A. F. MacDonald, Carbon, 37, No. 2, 269–274 (1999).CrossRefGoogle Scholar
  95. 95.
    M. A. Lillo-Ródenas, D. Cazorla-Amorós, A. Linares-Solano, Carbon, 41, No. 2, 267–275 (2003).CrossRefGoogle Scholar
  96. 96.
    N. Yoshizawa, K. Maruyama, Y. Yamada, and E. Ishikawa, Fuel, 81, No. 13, 1717–1722 (2002).CrossRefGoogle Scholar
  97. 97.
    P. M. Eletskii, Synthesis and Investigation of Carbon–Silica Nanocomposites, Meso-and Microporous Carbon Materials from High-Ash Biomass, Thesis for Candidate of Chemical Sciences [in Russian], Novosibirsk (2009).Google Scholar
  98. 98.
    P. M. Eletskii, V. A. Yakovlev, V. B. Fenelonov, and V. N. Parmon, Kinet. Katal., 49, No. 5, 741–753 (2008).CrossRefGoogle Scholar
  99. 99.
    J. Diaz-Terán, D. M. Nevskaia, J. L. G. Fierro, et al., Micropor. Mesopor. Mater., 60, Nos. 1–3, 173–181 (2003).CrossRefGoogle Scholar
  100. 100.
    J. Hayashi, T. Horikawa, I. Takeda, et al., Carbon, 40, No. 13, 2381–2386 (2002).CrossRefGoogle Scholar
  101. 101.
    D. Adinata, W. M. A. W. Daud, and M. K. Aroua, Bioresour. Technol., 98, No. 1, 145–149 (2007).CrossRefGoogle Scholar
  102. 102.
    D. W. McKee, Fuel, 62, No. 2, 170–175 (1983).CrossRefGoogle Scholar
  103. 103.
    P. M. Yeletsky, V. A. Yakovlev, M. S. Mel’gunov, and V. N. Parmon, Micropor. Mesopor. Mater., 121, Nos. 1–3, 34–40 (2009).CrossRefGoogle Scholar
  104. 104.
    E. A. Ustinov, V. B. Fenelonov, V. A. Yakovlev, and P. M. Eletskii, Kinet. Katal., 48, No. 4, 629–638 (2007).CrossRefGoogle Scholar
  105. 105.
    A. I. Zakharov, A. V. Belyakov, and A. N. Tsvigunov, Steklo Keram., 9/10, 37–41 (1993).Google Scholar
  106. 106.
    L. V. Saprykin and N. V. Kiseleva, Khim. Dreves., 6, 3–7 (1990).Google Scholar
  107. 107.
    L. A. Zemnukhova, A. G. Egorov, G. A. Fedorishcheva, et al., Neorgan. Mater., 42, No. 1, 27–32 (2006).Google Scholar
  108. 108.
    S. Chandrasekhar, K. G. Satyanarayana, P. N. Pramada, and P. Raghavan, J. Mater. Sci., 38, No. 15, 3159–3168 (2003).CrossRefGoogle Scholar
  109. 109.
    S. Huang, S. Jing, J. Wang, et al., Powder Technol., 117, No. 3, 232–238 (2001).CrossRefGoogle Scholar
  110. 110.
    G. T. Adylov, Sh. A. Faiziev, M. S. Paizullakhanov, et al., Letters to ZhTF, 29, No. 6, 7–13 (2003).Google Scholar
  111. 111.
    R. V. Krishnarao, M. M. Godkhindi, Ceram. Int., 18, No. 4, 243–249 (1992).CrossRefGoogle Scholar
  112. 112.
    B. K. Padhi, C. Patnaik, Ceram. Int., 21, No. 3, 213–220 (1995).CrossRefGoogle Scholar
  113. 113.
    J. C. C. Freitas, J. S. Moreira, F. G. Emmerich, and T. J. Bonagamba, J. Non-Cryst. Solids, 341, Nos. 1–3, 77–85 (2004).CrossRefGoogle Scholar
  114. 114.
    T. B. Ghosh, K. C. Nandi, H. N. Acharya, and D. Mukhrjee, Mater. Lett., 11, Nos. 1/2, 6–9 (1991).CrossRefGoogle Scholar
  115. 115.
    J.-M. Chen and F. W. Chang, Ind. Eng. Chem. Res., 30, No. 10, 2241–2247 (1991).CrossRefGoogle Scholar
  116. 116.
    T. Radhika and S. Sugunan, J. Mol. Catal. A, 250, Nos. 1/2, 169–176 (2006).Google Scholar
  117. 117.
    F.-W. Chang, W.-Y. Kuo, and H.-C. Yang, Appl. Catal. A, 288, Nos. 1/2, 53–61 (2005).Google Scholar
  118. 118.
    F.-W. Chang, H.-C. Yang, and L. S. Roselin, W.-Y. Kuo, Appl. Catal. A, 304, 30–39 (2006).CrossRefGoogle Scholar
  119. 119.
    D. Kalderis, S. Bethanis, P. Paraskeva, and E. Diamadopoulos, Bioresour. Technol., 99, No. 15, 6809–6816 (2008).CrossRefGoogle Scholar
  120. 120.
    Y. Guo and D. A. Rockstraw, Micropor. Mesopor. Mater., 100, No. 1–3, 12–19 (2007).CrossRefGoogle Scholar
  121. 121.
    M. M. Mohamed, J. Colloid Interface Sci., 272, No. 1, 28–34 (2004).CrossRefGoogle Scholar
  122. 122.
    Y. Guo and S. Yang, K. Yu, Mater. Chem. Phys., 74, No. 3, 320–323 (2002).CrossRefGoogle Scholar
  123. 123.
    Y. Guo, K. Yu, Z. Wang, and H. Xu, Carbon, 41, No. 8, 1645–1648 (2003).CrossRefGoogle Scholar
  124. 124.
    V. A. Yakovlev, P. M. Yeletsky, M. Yu. Lebedev, et al., Chem. Eng. J., 134, Nos. 1–3, 246–255 (2007).CrossRefGoogle Scholar
  125. 125.
    V. I. Posypaiko and E. A. Alekseeva (eds.), Melting Diagrams of Salt Systems [in Russian], Metallurgiya, Moscow (1977), Vol. 2.Google Scholar
  126. 126.
    D. P. Xu, S.-H. Yoon, I. Mochida, et al., Micropor. Mesopor. Mater., 115, No. 3, 461–468 (2008).CrossRefGoogle Scholar
  127. 127.
    Z. Ma, T. Kyotani, Z. Liu, et al., Chem. Mater., 13, No. 12, 4413–4415 (2001).CrossRefGoogle Scholar
  128. 128.
    P. Chan-ho, Ch. Hyuk, K. Ji-man, “Mesoporous carbon molecular sieve and supported catalyst employing the same,” Pat. 7220697 USA, Samsung SDI Co., Ltd. (S. Korea), Publ. May 22, 2007.Google Scholar
  129. 129.
    P. M. Eletskii, V. A. Yakovlev, V. N. Parmon, “Method of production of mesoporous carbon material,” Pat. 2366501 Russian Federation, IPC B 01 J 20/20, C 01 B 31/00, Applicant and patent holder G. K. Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, Publ. Sept. 10, 2009.Google Scholar
  130. 130.
    L. J. Kennedy, J. J. Vijaya, and G. Sekaran, Mater. Chem. Phys., 91, Nos. 2/3, 471–476 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • P. M. Eletskii
    • 1
    • 2
    Email author
  • V. A. Yakovlev
    • 1
  • V. N. Parmon
    • 1
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussian Federation
  2. 2.Novosibirsk State UniversityNovosibirskRussian Federation

Personalised recommendations