Advertisement

Theoretical and Experimental Chemistry

, Volume 45, Issue 5, pp 277–301 | Cite as

Role of the chemical structure of metal–organic framework compounds in the adsorption of hydrogen

  • S. V. KolotilovEmail author
  • V. V. Pavlishchuk
Article

The effect of the chemical structure of metal–organic framework compounds (MOF) (the presence of coordination-unsaturated metal ions, the nature of the metal ions, the presence of electron donor and electron acceptor groups in the ligands) on the ability of such compounds to sorb hydrogen is examined. It is shown that the macroscopic parameters (the surface area and pore size) make a major contribution to the adsorption of hydrogen while the chemical structure of the MOF plays a subsidiary role by determining the structural characteristics of the adsorbent.

Key words

metal–organic frameworks porous coordination polymers hydrogen sorption coordination-unsaturated ions effect of the nature of metal ions effect of functional groups 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. E. Morris, P. S. Wheatley, Angew. Chem. Int. Ed., 47, 4966 (2008).CrossRefGoogle Scholar
  2. 2.
    L. J. Murray, L. J. Duncã, J. R. Long, Chem. Soc. Rev., 38, 1294 (2009).CrossRefGoogle Scholar
  3. 3.
    A. M. Seayad, D. M. Antonelli, Adv. Mater., 16, 765 (2004).CrossRefGoogle Scholar
  4. 4.
    V. I. Isaeva, L. M. Kustov, Ros. Khim. Zh., 50, 56 (2006).Google Scholar
  5. 5.
    S. V. Kolotilov, V. V. Pavlishchuk, Teor. Éksp. Khim., 45, No. 2, 67-87 (2009). [Theor. Experim. Chem., 45, No. 2, 75-97 (2009).]Google Scholar
  6. 6.
    J. L. C. Rowsell, O. M. Yaghi, Angew. Chem. Int. Ed., 44, 4670 (2005).CrossRefGoogle Scholar
  7. 7.
    M. Dincã, J. R. Long, Angew. Chem. Int. Ed., 47, 6766 (2008).CrossRefGoogle Scholar
  8. 8.
    S. S. Han, J. L. Mendoza-Cortés, W. A. Goddard III, Chem. Soc. Rev., 38, 1460 (2009).CrossRefGoogle Scholar
  9. 9.
    D. J. Collins, H.-C. Zhou, J. Mater. Chem., 17, 3154 (2007).CrossRefGoogle Scholar
  10. 10.
    Hydrogen, Fuel Cells and Infrastructure Technologies Program: Multi-Year Research, Development, and Demonstration Plan, U.S. Dept. of Energy, (2005). http://www.eere.energy.gov/hydrogenandfuelcells/mypp/
  11. 11.
    A. G. Wong-Foy, A. J. Matzger, O. M. Yaghi, J. Amer. Chem. Soc., 128, 3494 (2006).CrossRefGoogle Scholar
  12. 12.
    B. Panella, K. Hönes, U. Müller, et al., Angew. Chem. Int. Ed., 47, 2138 (2008).CrossRefGoogle Scholar
  13. 13.
    E. Poirier, A. Dailly, J. Phys. Chem. C, 112, 13047 (2008).CrossRefGoogle Scholar
  14. 14.
    T. Yildirim, M. R. Hartman, Phys. Rev. Lett., 95, 215504-1 (2005).CrossRefGoogle Scholar
  15. 15.
    H. Wu, W. Zhou, T. Yildirim, J. Am. Chem. Soc., 129, 5314 (2007).CrossRefGoogle Scholar
  16. 16.
    V. K. Peterson, Y. Liu, C. M. Brown, C. J. Kepert, J. Am. Chem. Soc., 127, 15578 (2006).CrossRefGoogle Scholar
  17. 17.
    Y. Liu, H. Kabbour, C. M. Brown, et al., Langmuir, 24, 4772 (2008).CrossRefGoogle Scholar
  18. 18.
    M. Duncã, A. Dailly, Y. Liu, et al., J. Am. Chem. Soc., 128, 16876 (2006).CrossRefGoogle Scholar
  19. 19.
    M. Duncã, W. S. Han, Y. Liu, et al., Angew. Chem. Int. Ed., 46, 1419 (2007).CrossRefGoogle Scholar
  20. 20.
    J. Luo, H. Xu, Y. Liu, et al., J. Am. Chem. Soc., 130, 9626 (2008).CrossRefGoogle Scholar
  21. 21.
    M. R. Hartman, V. K. Peterson, Y. Liu, et al., Chem. Mater., 18, 3221 (2006).CrossRefGoogle Scholar
  22. 22.
    J. G. Vitillo, L. Regli, S. Chavan, et al., J. Am. Chem. Soc., 130, 8386 (2008).CrossRefGoogle Scholar
  23. 23.
    A. Zecchina, S. Bordiga, J. G. Vitillo, et al., J. Am. Chem. Soc., 127, 6361 (2005).CrossRefGoogle Scholar
  24. 24.
    C. O. Areán, M. R. Delgado, G. T. Palomino, et al., Micropor. Mesopor. Mater., 80, 247 (2005).CrossRefGoogle Scholar
  25. 25.
    C. O. Areán, O. V. Manoilova, B. Bonelli, et al., Chem. Phys. Lett., 370, 631 (2003).CrossRefGoogle Scholar
  26. 26.
    A. I. Serykh, V. B. Kazansky, Phys. Chem. Chem. Phys., 6, 5250 (2004).CrossRefGoogle Scholar
  27. 27.
    G. Spoto, E. Gribov, S. Bordiga, et al., Chem. Commun., 2768 (2004).Google Scholar
  28. 28.
    V. B. Kazansky, V. Yu. Borovkov, A. I. Serykh, et al., Phys. Chem. Chem. Phys., 1, 2881 (1999).CrossRefGoogle Scholar
  29. 29.
    D. M. Heinekey, W. J. Oldham, Jr., Chem. Rev., 93, 913 (1993).CrossRefGoogle Scholar
  30. 30.
    G. S. McGrady, G. Guilera, Chem. Soc. Rev., 32, 383 (2003).CrossRefGoogle Scholar
  31. 31.
    G. Garberoglio, A. I. Skoulidas, J. K. Johnson, J. Phys. Chem. B, 109, 13094 (2005).CrossRefGoogle Scholar
  32. 32.
    A. Mavrandonakis, E. Tylianakis, A. K, Stubos, G. E. Froudakis, J. Phys. Chem. C, 112, 7290 (2008).CrossRefGoogle Scholar
  33. 33.
    P. Dalach, H. Frost, R. Q. Snurr, D. E. Ellis, J. Phys. Chem. C, 112, 9278 (2008).CrossRefGoogle Scholar
  34. 34.
    E. C. Spencer, J. A. K. Howard, G. J. McIntyre, et al., Chem. Commun., 278 (2006).Google Scholar
  35. 35.
    T. Mueller, G. Ceder, J. Phys. Chem. B, 109, 17974 (2005).CrossRefGoogle Scholar
  36. 36.
    A. Kuc, T. Heine, G. Seifert, H. A. Duarte, Chem. Eur. J., 14, 6597 (2008).CrossRefGoogle Scholar
  37. 37.
    T. Sagara, J. Ortony, E. Ganz, J. Chem. Phys., 123, 214707 (2005).CrossRefGoogle Scholar
  38. 38.
    O. Hübner, A. Glöss, M. Fichtner, W. Klopper, J. Phys. Chem. A, 108, 3019 (2004).CrossRefGoogle Scholar
  39. 39.
    Q. Yang, C. Zhong, J. Phys. Chem. B, 110, 655 (2006).CrossRefGoogle Scholar
  40. 40.
    W. Zhou, H. Wu, T. Yildirim, J. Am. Chem. Soc., 130, 15268 (2008).CrossRefGoogle Scholar
  41. 41.
    R. C. Lochan, R. Z. Khaliullin, M. Head-Gordon, Inorg. Chem., 47, 4032 (2008).CrossRefGoogle Scholar
  42. 42.
    J. L. C. Rowsell, J. Eckert, O. M. Yaghi, J. Am. Chem. Soc., 127, 14904 (2005).CrossRefGoogle Scholar
  43. 43.
    Y. Kubota, M. Takata, R. Matsuda, et al., Angew. Chem. Int. Ed., 44, 920 (2005).CrossRefGoogle Scholar
  44. 44.
    N. L. Rosi, J. Eckert, M. Eddaoudi, et al., Science, 300, 1127 (2003).CrossRefGoogle Scholar
  45. 45.
    J. L. C. Rowsell, E. C. Spencer, J. Eckert, et al., Science, 309, 1350 (2005).CrossRefGoogle Scholar
  46. 46.
    Y. Liu, J. F. Eubank, A. J. Cairns, et al., Angew. Chem. Int. Ed., 46, 3278 (2007).CrossRefGoogle Scholar
  47. 47.
    J. L. Belof, A. C. Stern, M. Eddaoudi, B. Space, J. Am. Chem. Soc., 129, 15202 (2007).CrossRefGoogle Scholar
  48. 48.
    D. F. Sava, V. Ch. Kravtsov, F. Nouar, et al., J. Am. Chem. Soc., 130, 3768 (2008).CrossRefGoogle Scholar
  49. 49.
    K. S. Park, Z. Ni, A. P. Côté, et al., PNAS, 103, 10186 (2006).CrossRefGoogle Scholar
  50. 50.
    H. R. Moon, N. Kobayashi, M. P. Suh, Inorg. Chem., 45, 8672 (2006).CrossRefGoogle Scholar
  51. 51.
    J. L. C. Rowsell, O. M. Yaghi, J. Am. Chem. Soc., 128, 1304 (2006).CrossRefGoogle Scholar
  52. 52.
    A. A. Gonzalez, C. D. Hoff, Inorg. Chem., 28, 4295 (1989).CrossRefGoogle Scholar
  53. 53.
    P. G. Jessop, R. H. Morris, Coord. Chem. Rev., 121, 155 (1992).CrossRefGoogle Scholar
  54. 54.
    A. A. Gonzalez, K. Zhang, S. P. Nolan, et al., Organometallics, 7, 2429 (1988).CrossRefGoogle Scholar
  55. 55.
    R. Custelcean, J. E. Jackson, Chem. Rev., 101, 1963 (2001).CrossRefGoogle Scholar
  56. 56.
    G. J. Kubas, Chem. Rev., 107, 4152 (2007).CrossRefGoogle Scholar
  57. 57.
    S. Bordiga, J. G. Vitillo, G. Ricchiardi, et al., J. Phys. Chem. B, 109, 18237 (2005).CrossRefGoogle Scholar
  58. 58.
    W. Zhou, T. Yildirim, J. Phys. Chem. C, 112, 8132 (2008).CrossRefGoogle Scholar
  59. 59.
    J. L. Belof, A. C. Stern, M. Eddaoudi, B. Space, J. Am. Chem. Soc., 129, 15202 (2007).CrossRefGoogle Scholar
  60. 60.
    E. Garrone, C. O. Areán, Chem. Soc. Rev., 34, 846 (2005).CrossRefGoogle Scholar
  61. 61.
    C. O. Areán, G. T. Palomino, E. Garrone, et al., J. Phys. Chem. B, 110, 395 (2006).CrossRefGoogle Scholar
  62. 62.
    G. T. Palomino, M. R. L. Carayol, C. O. Areán, J. Mater. Chem., 16, 2884 (2006).CrossRefGoogle Scholar
  63. 63.
    D. Noguchi, H. Tanaka, A. Kondo, et al., J. Am. Chem. Soc., 130, 6367 (2008).CrossRefGoogle Scholar
  64. 64.
    K. L. Mulfort, J. T. Hupp, Inorg. Chem, 47, 7936 (2008).CrossRefGoogle Scholar
  65. 65.
    K. L. Mulfort, T. M. Wilson, M. R. Wasielewski, J. T. Hupp, Langmuir, 25, 503 (2009).CrossRefGoogle Scholar
  66. 66.
    K. L. Mulfort, J. T. Hupp, J. Am. Chem. Soc., 129, 9604 (2007).CrossRefGoogle Scholar
  67. 67.
    K. L. Mulfort, O. K. Farha, C. L. Stern, et al., J. Am. Chem. Soc., 131, 3866 (2009).CrossRefGoogle Scholar
  68. 68.
    P. D. C. Dietzel, R. E. Johnsen, R. Blom, H. Fjellvåg, Chem. Eur. J., 14, 2389 (2008).CrossRefGoogle Scholar
  69. 69.
    S. S.-Y. Chui, S. M.-F. Lo, J. P. H. Charmant, et al., Science, 283, 1148 (1999).CrossRefGoogle Scholar
  70. 70.
    M. O’Keeffe, M. Eddaoudi, H. Li, et al., J. Solid. State. Chem., 152, 3 (2000).CrossRefGoogle Scholar
  71. 71.
    P. Krawiec, M. Kramer, M. Sabo, et al., Adv. Eng. Mater., 8, 293-296 (2006).CrossRefGoogle Scholar
  72. 72.
    N. L. Rosi, J. Kim, M. Eddaoudi, et al., J. Am. Chem. Soc., 127, 1504 (2005).CrossRefGoogle Scholar
  73. 73.
    G. J. Kubas, R. R. Ryan, B. I. Swanson, et al., J. Am. Chem. Soc., 106, 451 (1984).CrossRefGoogle Scholar
  74. 74.
    L. S. Van Der Sluys, J. Eckert, M. Eisenstein, et al., 112, 4831 (1990).Google Scholar
  75. 75.
    C. Prestipino, L. Regli, J. G. Vitillo, et al., Chem. Mater., 18, 1337 (2006).CrossRefGoogle Scholar
  76. 76.
    B. Chen, N. W. Ockwig, A. R. Millward, et al., Angew. Chem. Int. Ed., 44, 4745 (2005).CrossRefGoogle Scholar
  77. 77.
    Y.-G. Lee, H. R. Moon, Y. E. Cheon, M. P. Suh, Angew. Chem. Int. Ed., 47, 7741 (2008).CrossRefGoogle Scholar
  78. 78.
    X.-S. Wang, S. Ma, P. M. Forster, et al., Angew. Chem. Int. Ed., 47, 7263 (2008).CrossRefGoogle Scholar
  79. 79.
    D. Sun, S. Ma, Y. Ke, et al., J. Amer. Chem. Soc., 128, 3896 (2006).CrossRefGoogle Scholar
  80. 80.
    S. Ma, J. Eckert, P. M. Forster, et al., J. Am. Chem. Soc., 130, 15896 (2008).CrossRefGoogle Scholar
  81. 81.
    S. Ma, D. Sun, M. Ambrogio, et al., J. Am. Chem. Soc., 129, 1858 (2007).CrossRefGoogle Scholar
  82. 82.
    B. Chen, X. Zhao, A. Putkham, et al., J. Am. Chem. Soc., 130, 6411 (2008).CrossRefGoogle Scholar
  83. 83.
    P. M. Forster, J. Eckert, B. D. Heiken, et al., J. Am. Chem. Soc., 128, 16846 (2006).CrossRefGoogle Scholar
  84. 84.
    M. Dincã, J. R. Long, J. Am. Chem. Soc., 129, 11172 (2007).CrossRefGoogle Scholar
  85. 85.
    P. D. C. Dietzel, B. Panella, M. Hirscher, et al., Chem. Commun., 959 (2006).Google Scholar
  86. 86.
    G. Férey, M. Latroche, C. Serre, et al., Chem. Commun., 2976 (2003).Google Scholar
  87. 87.
    F. Millange, C. Serre, G. Férey, Chem. Commun., 822 (2002).Google Scholar
  88. 88.
    C. Serre, F. Millange, C. Thouvenot, et al., J. Am. Chem. Soc., 124, 13519 (2002).CrossRefGoogle Scholar
  89. 89.
    T. Loiseau, C. Serre, C. Huguenard, et al., Chem. Eur. J., 10, 1373 (2004).CrossRefGoogle Scholar
  90. 90.
    X. Lin, J. Jia, X. Zhao, K. M. Thomas, et al., Angew. Chem. Int. Ed., 45, 7358 (2006).CrossRefGoogle Scholar
  91. 91.
    D. S. Kim, P. M. Forster, R. Le Toquin, A. K. Cheetham, Chem. Commun., 2148 (2004).Google Scholar
  92. 92.
    P. D. C. Dietzel, Y. Morita, R. Blom, H. Fjellvåg, Angew. Chem. Int. Ed., 44, 6354 (2005).CrossRefGoogle Scholar
  93. 93.
    S. R. Caskey, A. G. Wong-Foy, A. J. Matzger, J. Am. Chem. Soc., 130, 10870 (2008).CrossRefGoogle Scholar
  94. 94.
    S. S. Kaye, J. R. Long, J. Am. Chem. Soc., 127, 6506 (2005).CrossRefGoogle Scholar
  95. 95.
    K. W. Chapman, P. J. Chupas, E. R. Maxey, J. W. Richardson, Chem. Commun., 4013 (2006).Google Scholar
  96. 96.
    K. W. Chapman, P. D. Southon, C. L. Weeks, C. J. Kepert, 3322 (2005).Google Scholar
  97. 97.
    Q. Yang, C. Zhong, J. Phys. Chem. B, 109, 11862 (2005).CrossRefGoogle Scholar
  98. 98.
    S. S. Han, H. Furukawa, O. M. Yaghi, W. A. Goddard III, J. Am. Chem. Soc., 130, 11580 (2008).CrossRefGoogle Scholar
  99. 99.
    M. Eddaoudi, J. Kim, N. Rosi, et al., Science, 295, 469 (2002).CrossRefGoogle Scholar
  100. 100.
    H. Chun, D. N. Dybtsev, H. Kim, K. Kim, Chem. Eur. J., 11, 3521 (2005).CrossRefGoogle Scholar
  101. 101.
    D. N. Dybtsev, H. Chun, K. Kim, Angew. Chem. Int. Ed., 43, 5033 (2004).CrossRefGoogle Scholar
  102. 102.
    J. L. C. Rowsell, A. R. Millward, K. S. Park, O. M. Yaghi, J. Am. Chem. Soc., 126, 5666 (2004).CrossRefGoogle Scholar
  103. 103.
    T. Sagara, J. Klassen, J. Ortony, E. Ganz, J. Chem. Phys., 123, 014701 (2005).CrossRefGoogle Scholar
  104. 104.
    C. Buda, B. D. Dunietz, J. Phys. Chem. B, 110, 10479 (2006).CrossRefGoogle Scholar
  105. 105.
    L. Pan, M. B. Sander, X. Huang, et al., J. Am. Chem. Soc., 126, 1308 (2004).CrossRefGoogle Scholar
  106. 106.
    C. Yang, X. Wang, M. A. Omary, J. Am. Chem. Soc., 129, 15454 (2007).CrossRefGoogle Scholar
  107. 107.
    J. H. Yoon, S. B. Choi, Y. J. Oh, et al., Catal. Today, 120, 324 (2007).CrossRefGoogle Scholar
  108. 108.
    M. Latroche, S. Surblé, C. Serre, et al., Angew. Chem. Int. Ed., 45, 8227 (2006).CrossRefGoogle Scholar
  109. 109.
    S. Surblé, F. Millange, C. Serre, et al., J. Am. Chem. Soc., 128, 14889 (2006).CrossRefGoogle Scholar
  110. 110.
    Y. Li, L. Xie, Y. Liu, et al., Inorg. Chem., 47, 10372 (2008).CrossRefGoogle Scholar
  111. 111.
    S. S. Han, W. A. Goddard, III, J. Phys. Chem. C, 112, 13431 (2008).CrossRefGoogle Scholar
  112. 112.
    S. Ma, X.-S. Wang, C. D. Collier, et al., Inorg. Chem., 46, 8499 (2007).CrossRefGoogle Scholar
  113. 113.
    B. Kesanli, Y. Cui, M. R. Smith, et al., Angew. Chem. Int. Ed., 44, 72 (2005).CrossRefGoogle Scholar
  114. 114.
    A. Dailly, J. J. Vajo, C. C. Ahn, J. Phys. Chem. B, 110, 1099 (2006).CrossRefGoogle Scholar
  115. 115.
    B. Liu, Q. Yang, C. Xue, et al., J. Phys. Chem. C, 112, 9854 (2008).CrossRefGoogle Scholar
  116. 116.
    M. Duncã, A. Dailly, C. Tsay, J. R. Long, Inorg. Chem., 47, 11 (2008).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  1. 1.L. V. Pisarzhevskii Institute of Physical ChemistryNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations