Advertisement

Theoretical and Experimental Chemistry

, Volume 45, Issue 2, pp 125–130 | Cite as

Effect of ZrO2 morphology in copper–cerium–zirconium oxide systems on their catalytic properties in the reaction of co oxidation in hydrogen-rich mixtures

  • A. V. Gural’skii
  • V. P. Pakharukova
  • G. R. KosmambetovaEmail author
  • P. E. Strizhak
  • É. M. Moroz
  • V. I. Gritsenko
Article

We studied the catalytic properties of copper–cerium oxide systems, deposited on supports obtained by calcination of yttrium-stabilized zirconium dioxide at 300-1000 °C, in the reaction of selective oxidation of CO in a stream of hydrogen. We have shown that the catalytic activity of the samples obtained correlates with the activity of the original supports in the reaction of CO oxidation: the highest CO conversion is observed on catalysts with the highest and the lowest specific surface area.

Key words

selective oxidation of CO in a stream of hydrogen nanosized zirconium dioxide copper–cerium–zirconium catalysts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Avgouropoulos, T. Ioannides, H. K. Matralis, et al., Catal. Lett., 73, No. 1, 33-40 (2001).CrossRefGoogle Scholar
  2. 2.
    M. Manzoli, R. Di Monte, F. Boccuzzi, et al., Appl. Catal. B., 61, 192-205 (2005).CrossRefGoogle Scholar
  3. 3.
    E. D. Park, D. Lee, and H. C. Lee, Catal. Today, 139, 280-290 (2009).CrossRefGoogle Scholar
  4. 4.
    G. R. Kosmambetova, V. I. Gritsenko, P. E. Strizhak, and A. M. Korduban, Teor. Éksp. Khim., 42, No. 2, 119-124 (2006). [Theor. Experim. Chem., 42, No. 2, 133-138 (2006).]Google Scholar
  5. 5.
    G. R. Kosmambetova, P. E. Strizhak, É. M. Moroz, et al., Teor. Éksp. Khim., 43, No. 2, 96-101 (2007). [Theor. Experim. Chem., 43, No. 2, 102-107 (2007).]Google Scholar
  6. 6.
    G. R. Kosmambetova, P. E. Strizhak, É. M. Moroz, et al., Katal. Promyshlen., No. 2, 13-19 (2008).Google Scholar
  7. 7.
    JCPDS-ICDD Card File (1997).Google Scholar
  8. 8.
    X’Pert HighScore Plus Program, Version 2.1, PANalytical, Almelo, Netherlands (2004).Google Scholar
  9. 9.
    J. Rodriguez-Carvajal, An Introduction to the Program FullProf 2000. Version July 2001, Laboratoire Leon Brillouin, France (2001).Google Scholar
  10. 10.
    G. J. Hutchings and S. H. Taylor, Catal. Today, 49, Nos. 1-3, 105-113 (1999).CrossRefGoogle Scholar
  11. 11.
    E. V. Ishchenko, V. K. Yatsimirskii, and S. V. Gaidai, Teor. Éksp. Khim., 41, No. 5, 323-327 (2005). [Theor. Experim. Chem., 41, No. 5, 340-345 (2005).]Google Scholar
  12. 12.
    J. B. Wang, S.-C. Lin, and T.-J. Huang, Appl. Catal. A, 232, 107-120 (2002).CrossRefGoogle Scholar
  13. 13.
    N. Ya. Usachev, I. A. Gorevaya, E. P. Belanova, et al., Mendeleev Commun., 14, No. 2, 79-80 (2004).CrossRefGoogle Scholar
  14. 14.
    V. P. Kol’ko, R. I. Gulyaev, É. M. Moroz, et al., Izv. Ros. Akad. Nauk, Ser. Fiz., 72, No. 8, 1178-1182 (2008).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • A. V. Gural’skii
    • 1
  • V. P. Pakharukova
    • 2
  • G. R. Kosmambetova
    • 1
    Email author
  • P. E. Strizhak
    • 1
  • É. M. Moroz
    • 2
  • V. I. Gritsenko
    • 1
  1. 1.L. V. Pisarzhevskii Institute of Physical ChemistryNational Academy of Sciences of UkraineKyivUkraine
  2. 2.G. K. Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussian Federation

Personalised recommendations