Advertisement

Theoretical and Experimental Chemistry

, Volume 45, Issue 2, pp 75–97 | Cite as

Effect of structural and thermodynamic factors on the sorption of hydrogen by metal–organic framework compounds

  • S. V. KolotilovEmail author
  • V. V. Pavlishchuk
Article

The characteristics of the sorption of hydrogen by metal–organic framework compounds (MOF) were examined, and the structural and thermodynamic factors that favor the sorption of H2 by such substances were determined. The effect of the structure of the MOF and the size and geometry of the pores on the sorption characteristics was analyzed.

Key words

metal–organic frameworks porous coordination polymers hydrogen sorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    High Level Group of the European Commission, September 2003. Market Development of Alternative Fuels. Report of the Alternative Fuels Contact Group, December, 2003.Google Scholar
  2. 2.
    Hydrogen Energy and Fuel Cells. A Vision of Our Future. Directorate-General for Research, 2003, Directorate-General for Energy and Transport EUR 20719 EN.Google Scholar
  3. 3.
    J. A. Ritter, A. D. Ebner, J. Wang, and R. Zidan, Mater. Today, 6, 18 (2003).CrossRefGoogle Scholar
  4. 4.
    Hydrogen Storage Mater. Workshop Proc., United States Department of Energy, August 14-15, 2002. http://www.eere.energy.gov/hydrogenandfuelcells/pdfs/h2_stor_mat_work_proceedings.pdf
  5. 5.
    B. P. Tarasov and M. V. Lototskii, Ros. Khim. Zh., 50, 5 (2006).Google Scholar
  6. 6.
    J. L. C. Rowsell and O. M. Yaghi, Angew. Chem. Int. Ed., 44, 4670 (2005).CrossRefGoogle Scholar
  7. 7.
    V. I. Isaeva and L. M. Kustov, Ros. Khim. Zh., 50, 56 (2006).Google Scholar
  8. 8.
    D. J. Collins and H.-C. Zhou, J. Mater. Chem., 17, 3154 (2007).CrossRefGoogle Scholar
  9. 9.
    Basic Research Needs for the Hydrogen Economy, United States Department of Energy, Report of the Basic Energy Sciences Workshop on Hydrogen Production, Storage, and Use, May 13-15 (2003). http://www.sc.doe.gov/bes/hydrogen.pdf
  10. 10.
    E. Tzimas, C. Filiou, S. D. Peteves, and J.-B. Veyret, Hydrogen Storage: State-of-the-Art and Future Perspective, European Commission DG JRC Institute for Energy, Petten (2003). http://www.jrc.nl/publ/2003_publ.html.
  11. 11.
    M. Jacoby, Chem. Eng. News, 22, 42 (2005).Google Scholar
  12. 12.
    A. Züttel, Mater. Today, 6, 24 (2003).CrossRefGoogle Scholar
  13. 13.
    M. Hirscher, M. Becher, M. Haluska, et al., J. Alloys Comp., 356/357, 433 (2003).CrossRefGoogle Scholar
  14. 14.
    H.-M. Cheng, Q.-H. Yang, and C. Liu, Carbon, 39, 1447 (2001).CrossRefGoogle Scholar
  15. 15.
    A. M. Seayad and D. M. Antonelli, Adv. Mater., 16, 765 (2004).CrossRefGoogle Scholar
  16. 16.
    P. Bénard and R. Chahine, Langmuir, 17, 1950 (2001).CrossRefGoogle Scholar
  17. 17.
    M. R. Smith Jr., E. W. Bittner, W. Shi, et al., J. Phys. Chem. B, 107, 3752 (2003).CrossRefGoogle Scholar
  18. 18.
    L. Regli, A. Zecchina, J. G. Vitillo, et al., Phys. Chem. Chem. Phys., 7, 3197 (2005).CrossRefGoogle Scholar
  19. 19.
    M. G. Nijkamp, J. E. M. J. Raaymakers, A. J. van Dillen, and K. P. de Jong, Appl. Phys. A, 72, 619 (2001).CrossRefGoogle Scholar
  20. 20.
    S. N. Klyamkin, Ros. Khim. Zh., 50, 49 (2006).Google Scholar
  21. 21.
    B. P. Tarasov, M. V. Lototskii, and V. A. Yartys’, Ros. Khim. Zh., 50, 34 (2006).Google Scholar
  22. 22.
    N. B. McKeown, B. Gahnem, K. J. Msayib, et al., Angew. Chem. Int. Ed., 45, 1804 (2006).CrossRefGoogle Scholar
  23. 23.
    H. M. El-Kaderi, J. R. Hunt, J. L. Mendoza-Cortés, et al., Science, 316, 268 (2007).CrossRefGoogle Scholar
  24. 24.
    M. Mastalerz, Angew. Chem. Int. Ed., 47, 445 (2008).CrossRefGoogle Scholar
  25. 25.
    A. G. Wong-Foy, A. J. Matzger, and O. M. Yaghi, J. Am. Chem. Soc., 128, 3494 (2006).CrossRefGoogle Scholar
  26. 26.
    X. Lin, J. Jia, X. Zhao, et al., Angew. Chem. Int. Ed., 45, 7358 (2006).CrossRefGoogle Scholar
  27. 27.
    S. Takamizawa, E. Nakata, and T. Saito, Inorg. Chem. Commun., 7, 125 (2004).CrossRefGoogle Scholar
  28. 28.
    R. Nukada, W. Mori, S. Takamizawa, et al., Chem. Lett., 367 (1999).Google Scholar
  29. 29.
    M. Eddaoudi, J. Kim, N. Rosi, et al., Science, 295, 469 (2002).CrossRefGoogle Scholar
  30. 30.
    J. Y. Lee, J. Li, and J. Jagiello, J. Solid State Chem., 178, 2527 (2005).CrossRefGoogle Scholar
  31. 31.
    M. Jansen and J. C. Schön, Angew. Chem. Int. Ed., 45, 3406 (2006).CrossRefGoogle Scholar
  32. 32.
    J. Miyamoto, Y. Hattori, D. Noguchi, et al., J. Am. Chem. Soc., 128, 12636 (2006).CrossRefGoogle Scholar
  33. 33.
    B. Panella, K. Hönes, U. Müller, et al., Angew. Chem. Int. Ed., 47, 2138 (2008).CrossRefGoogle Scholar
  34. 34.
    R. E. Morris and P. S. Wheatley, Angew. Chem. Int. Ed., 47, 4966 (2008).CrossRefGoogle Scholar
  35. 35.
    T. Düren, F. Millange, G. Férey, et al., J. Phys. Chem. C, 111, 15350 (2007).CrossRefGoogle Scholar
  36. 36.
    A. J. Fletcher, K. M. Thomas, and M. J. Rosseinsky, J. Solid State Chem., 178, 2491 (2005).CrossRefGoogle Scholar
  37. 37.
    K. S. W. Sing, D. H. Everett, R. A. W. Haul, et al., Pure. Appl. Chem., 57, 603 (1985).CrossRefGoogle Scholar
  38. 38.
    H. Frost, T. Düren, and R. Q. Snurr, J. Phys. Chem. B, 110, 9565 (2006).CrossRefGoogle Scholar
  39. 39.
    M. Duncă and J. R. Long, J. Am. Chem. Soc., 127, 9376 (2005).CrossRefGoogle Scholar
  40. 40.
    M. M. L. R. Carrott, A. J. E. Candeias, P. J. M. Carrott, et al., Micropor. Mesopor. Mater., 47, 323-337 (2001).CrossRefGoogle Scholar
  41. 41.
    S. V. Kolotilov, A. V. Shvets, and V. N. Solomakha, Teor. Éksp. Khim., 42, No. 1, 39-43 (2006). [Theor. Experim. Chem., 42, No. 1, 43-47 (2006).]Google Scholar
  42. 42.
    S. V. Kolotilov, N. N. Stepanenko, Zh. V. Chernenko, and A. V. Shvets, Teor. Éksp. Khim., 44, No. 1, 58-63 (2008). [Theor. Experim. Chem., 44, No. 1, 60-65 (2008).]Google Scholar
  43. 43.
    S. V. Kolotilov, O. Cador, S. Golhen, et al., Inorg. Chim. Acta, 360, 1883 (2007).CrossRefGoogle Scholar
  44. 44.
    J. L. C. Rowsell and O. M. Yaghi, J. Am. Chem. Soc., 128, 1304 (2006).CrossRefGoogle Scholar
  45. 45.
    J. Y. Lee, L. Pan, S. P. Kelly, et al., Adv. Mater., 17, 2703 (2005).CrossRefGoogle Scholar
  46. 46.
    B. Chen, N. W. Ockwig, A. R. Millward, et al., Angew. Chem. Int. Ed., 44, 4745 (2005).CrossRefGoogle Scholar
  47. 47.
    D. P. Broom and P. Moretto, J. Alloys Comp., 446/447, 687 (2007).CrossRefGoogle Scholar
  48. 48.
    D. P. Broom, Int. J. Hydrogen Energy, 32, 4871 (2007).CrossRefGoogle Scholar
  49. 49.
    K. P. Mishchenko and A. A. Ravdel’ (eds.), Concise Handbook of Physicochemical Quantities [in Russian], Khimiya, Leningrad (1974), p. 171.Google Scholar
  50. 50.
    S. L. James, Chem. Soc. Rev., 32, 276 (2003).CrossRefGoogle Scholar
  51. 51.
    J. Kim, B. Chen, T. M. Reineke, et al., J. Am. Chem. Soc., 123, 8239 (2001).CrossRefGoogle Scholar
  52. 52.
    O. M. Yaghi, M. O’Keeffe, N. W. Ockwig, et al., Nature, 423, 705 (2003).CrossRefGoogle Scholar
  53. 53.
    S. Natarajan and S. Mandal, Angew. Chem. Int. Ed., 47, 4798 (2008).CrossRefGoogle Scholar
  54. 54.
    M. Eddaoudi, D. B. Moler, H. Li, et al., Accounts Chem. Res., 34, 319-330 (2001).CrossRefGoogle Scholar
  55. 55.
    J. L. C. Rowsell, A. R. Millward, K. S. Park, and O. M. Yaghi, J. Am. Chem. Soc., 126, 5666 (2004).CrossRefGoogle Scholar
  56. 56.
    S. S. Kaye and J. R. Long, J. Am. Chem. Soc., 127, 6506 (2005).CrossRefGoogle Scholar
  57. 57.
    H. Chun, D. N. Dybtsev, H. Kim, and K. Kim, Chem. Eur. J., 11, 3521 (2005).CrossRefGoogle Scholar
  58. 58.
    D. N. Dybtsev, H. Chun, and K. Kim, Angew. Chem. Int. Ed., 43, 5033 (2004).CrossRefGoogle Scholar
  59. 59.
    H. K. Chae, D. Y. Siberio-Pérez, J. Kim, et al., Nature, 427, 523 (2004).CrossRefGoogle Scholar
  60. 60.
    D. Sun, S. Ma, Y. Ke, et al., J. Am. Chem. Soc., 128, 3896 (2006).CrossRefGoogle Scholar
  61. 61.
    B. Kesanli, Y. Cui, M. R. Smith, et al., Angew. Chem. Int. Ed., 44, 72 (2005).CrossRefGoogle Scholar
  62. 62.
    M. Latroche, S. Surblé, C. Serre, et al., Angew. Chem. Int. Ed., 45, 8227 (2006).CrossRefGoogle Scholar
  63. 63.
    Y. Wang, P. Cheng, J. Chen, et al., Inorg. Chem., 46, 4530 (2007).CrossRefGoogle Scholar
  64. 64.
    G. Férey, M. Latroche, C. Serre, et al., Chem. Commun., 2976 (2003).Google Scholar
  65. 65.
    S. Surblé, F. Millange, C. Serre, et al., J. Am. Chem. Soc., 128, 14889 (2006).CrossRefGoogle Scholar
  66. 66.
    K. S. Park, Z. Ni, A. P. Côté, et al., Proc. Natl. Acad. Sci. USA, 103, 10186 (2006).CrossRefGoogle Scholar
  67. 67.
    B. Chen, S. Ma, F. Zapata, et al., Inorg. Chem., 45, 5718 (2006).CrossRefGoogle Scholar
  68. 68.
    P. D. C. Dietzel, B. Panella, M. Hirscher, et al., Chem. Commun., 959 (2006).Google Scholar
  69. 69.
    Y.-G. Lee, H. R. Moon, Y. E. Cheon, and M. P. Suh, Angew. Chem. Int. Ed., 47, 7741 (2008).CrossRefGoogle Scholar
  70. 70.
    X.-S. Wang, S. Ma, P. M. Forster, et al., Angew. Chem. Int. Ed., 47, 7263 (2008).CrossRefGoogle Scholar
  71. 71.
    H. J. Buser, D. Schwarzenbach, W. Petter, and A. Ludi, Inorg. Chem., 16, 2704 (1977).CrossRefGoogle Scholar
  72. 72.
    K. W. Chapman, P. J. Chupas, E. R. Maxey, and J. W. Richardson, Chem. Commun., 4013 (2006).Google Scholar
  73. 73.
    S. K. Bhatia and A. L. Myers, Langmuir, 22, 1688 (2006).CrossRefGoogle Scholar
  74. 74.
    G. Garberoglio, A. I. Skoulidas, and J. K. Johnson, J. Phys. Chem. B, 109, 13094 (2005).CrossRefGoogle Scholar
  75. 75.
    J. Eckert and G. J. Kubas, J. Phys. Chem., 97, 2378 (1993).CrossRefGoogle Scholar
  76. 76.
    M. Dincă and J. R. Long, Angew. Chem. Int. Ed., 47, 6766 (2008).CrossRefGoogle Scholar
  77. 77.
    E. Poirier, R. Chahine, P. Bénard, et al., Langmuir, 22, 8784 (2006).CrossRefGoogle Scholar
  78. 78.
    S. K. Bhatia and H. K. Shethna, Langmuir, 10, 3230-3243 (1994).CrossRefGoogle Scholar
  79. 79.
    D. Ramirez, S. Qi, M. J. Rood, and K. Hay, J. Environ. Sci. Technol., 39, 5864 (2005).CrossRefGoogle Scholar
  80. 80.
    B. Panella, M. Hirscher, H. Putter, and U. Müller, Adv. Funct. Mater., 16, 520 (2006).CrossRefGoogle Scholar
  81. 81.
    A. C. Sudik, A. R. Millward, N. W. Ockwig, et al., J. Am. Chem. Soc., 127, 7110 (2005).CrossRefGoogle Scholar
  82. 82.
    Z. Yang, Y. Xia, and R. Mokaya, J. Am. Chem. Soc., 129, 1673 (2007).CrossRefGoogle Scholar
  83. 83.
    X. Hu, B. O. Skadtchenko, Mi. Trudeau, and D. M. Antonelli, J. Am. Chem. Soc., 128, 11740 (2006).CrossRefGoogle Scholar
  84. 84.
    V. P. Vasil’ev, Thermodynamic Characteristics of Solutions of Electrolytes [in Russian], Vysshaya Shkola, Moscow (1982).Google Scholar
  85. 85.
    J. Taylor, Introduction to Theory of Errors [Russian translation], Mir, Moscow (1985).Google Scholar
  86. 86.
    J. T. Culp, C. Matranga, M. Smith, et al., J. Phys. Chem. B, 110, 8325 (2006).CrossRefGoogle Scholar
  87. 87.
    S. S.-Y. Chui, S. M.-F. Lo, J. P. H. Charmant, et al., Science, 283, 1148 (1999).CrossRefGoogle Scholar
  88. 88.
    M. O’Keeffe, M. Eddaoudi, H. Li, et al., J. Solid. State. Chem., 152, 3 (2000).CrossRefGoogle Scholar
  89. 89.
    P. Krawiec, M. Kramer, M. Sabo, et al., Adv. Eng. Mater., 8., 293-296 (2006).CrossRefGoogle Scholar
  90. 90.
    D. Basmadjian, Can. J. Chem., 38, 141 (1960).CrossRefGoogle Scholar
  91. 91.
    X. B. Zhao, B. Xiao, A. J. Fletcher, and K. M. Thomas, J. Phys. Chem. B, 109, 8880 (2005).CrossRefGoogle Scholar
  92. 92.
    F. Stéphanie-Victoire, A.-M. Goulay, and E. Cohen de Lara, Langmuir, 14, 7255 (1998).CrossRefGoogle Scholar
  93. 93.
    G. Férey, C. Serre, C. Mellot-Draznieks, et al., Angew. Chem. Int. Ed., 43, 6296 (2004).CrossRefGoogle Scholar
  94. 94.
    G. Férey, C. Mellot-Draznieks, C. Serre, et al., Science, 309, 2040 (2005).CrossRefGoogle Scholar
  95. 95.
    S. V. Kolotilov, A. V. Shvets, and N. V. Kas’yan, Teor. Éksp. Khim., 42, No. 5, 265-270 (2006). [Theor. Experim. Chem., 42, No, 5, 271-276 (2006).]Google Scholar
  96. 96.
    H. Chun, H. Jung, G. Koo, et al., Inorg. Chem., 47, 5355 (2008).CrossRefGoogle Scholar
  97. 97.
    N. L. Rosi, J. Eckert, M. Eddaoudi, et al., Science, 300, 1127 (2003).CrossRefGoogle Scholar
  98. 98.
    L. Pan, M. B. Sander, X. Huang, et al., J. Am. Chem. Soc., 126, 1308 (2004).CrossRefGoogle Scholar
  99. 99.
    K. L. Mulfort and J. T. Hupp, Inorg. Chem., 47, 7936 (2008).CrossRefGoogle Scholar
  100. 100.
    P. M. Forster, J. Eckert, J.-S. Chang, et al., J. Am. Chem. Soc., 125, 1309 (2003).CrossRefGoogle Scholar
  101. 101.
    Ya. D. Lampeka and L. V. Tsimbal, Teor. Éksp. Khim., 40, No. 6, 331-357 (2004). [Theor. Experim. Chem., 40, No. 6, 345-371 (2004).]Google Scholar
  102. 102.
    O. K. Farha, A. M. Spokoyny, K. L. Mulfort, et al., J. Am. Chem. Soc., 129, 12680 (2007).CrossRefGoogle Scholar
  103. 103.
    J. H. Yoon, S. B. Choi, Y. J. Oh, et al., Catal. Today, 120, 324 (2007).CrossRefGoogle Scholar
  104. 104.
    K. W. Chapman, P. D. Southon, C. L. Weeks, and C. J. Kepert, Chem. Commun., 3322 (2005).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  1. 1.L. V. Pisarzhevskii Institute of Physical ChemistryNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations