Advertisement

Theoretical and Experimental Chemistry

, Volume 43, Issue 2, pp 102–107 | Cite as

Influence of the conditions of manufacture of nanomeric zirconium dioxide, stabilized with yttrium oxide, on its catalytic properties in the oxidation of CO

  • G. R. Kosmambetova
  • P. E. Strizhak
  • É. M. Moroz
  • T. E. Konstantinova
  • A. V. Gural’skii
  • V. P. Kol’ko
  • V. I. Gritsenko
  • I. A. Danilenko
  • O. A. Gorban
Article

Abstract

The morphological and catalytic properties of samples of nanomeric zirconium dioxide, stabilized with yttrium oxide, manufactured via the effect of a UHF field during the process of drying precipitated zirconium hydroxide and calcination at temperatures from 300 to 1000 °C, were studied. It was shown that the highest activity in the oxidation of CO occurred with 40 nm particles of zirconium dioxide prepared at 1000 °C.

Key words

zirconium dioxide stabilized with yttrium oxide oxidation of CO nanoparticles UHF field X-ray phase analysis transmission electron microscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. E. Konstantinova, I. A. Danilenko, V. V. Tokii, and V. A. Glazunova, Nauka Innovat., 1, No. 3, 76–87 (2005).Google Scholar
  2. 2.
    J. Zhu, Jan G. van Ommen, and L. Lefferts, Catal. Today, 117, 163–167 (2006).CrossRefGoogle Scholar
  3. 3.
    V. L. Struzhko, E. V. Senchilo, and V. G. Il’in, Teor. Éksp. Khim., 40, No. 1, 52–56 (2004). [Theor. Experim. Chem., 40, No. 1, 59–63 (2004)].Google Scholar
  4. 4.
    V. L. Struzhko, E. V. Senchilo, and V. G. Il’in, Teor. Éksp. Khim., 40, No. 5, 273–278 (2004). [Theor. Experim. Chem., 40, No. 5, 281–286 (2004)].Google Scholar
  5. 5.
    W. Li and L. Gao, Scripta Mater., 44, 2269–2272 (2001).CrossRefGoogle Scholar
  6. 6.
    W. Li and L. Gao, Ceram. Int., 27, 543–546 (2001).CrossRefGoogle Scholar
  7. 7.
    Y. L. Zhang, X. J. Jin, Y. H. Rong, et al., Mater. Sci. Eng. A, 438-440, 399–402 (2006).CrossRefGoogle Scholar
  8. 8.
    PCPDFWIN, No. 42-1164.Google Scholar
  9. 9.
    T. E. Konstantinova, I. A. Danilenko, V. V Tokii, et al., Nanosyst., Nanomater., Nanotekhnol., 2, No. 2, 609–632 (2004).Google Scholar
  10. 10.
    Z.-Yi. Ma, C. Yang, W. Wei, et al., J. Mol. Catal., 227, 119–124 (2005)CrossRefGoogle Scholar
  11. 11.
    K. Pokrovski, K. T. Jung, and A. T. Bell, Langmuir, 17, 4297–4303 (2001).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • G. R. Kosmambetova
    • 1
  • P. E. Strizhak
    • 1
  • É. M. Moroz
    • 2
  • T. E. Konstantinova
    • 3
  • A. V. Gural’skii
    • 1
  • V. P. Kol’ko
    • 2
  • V. I. Gritsenko
    • 1
  • I. A. Danilenko
    • 3
  • O. A. Gorban
    • 3
  1. 1.L. V. Pisarzhevskii Institute of Physical ChemistryNational Academy of Sciences of UkraineKyivUkraine
  2. 2.G. K. Boreskov Institute of Catalysis, Siberian BranchRussian Academy of ScienceNovosibirskUSA
  3. 3.A. A. Galkin Donets’k Physico-Chemical InstituteNational Academy of Sciences of UkraineDonets’kUkraine

Personalised recommendations