Large-scale channel characterization at 28 GHz on a university campus in the United Arab Emirates

  • 20 Accesses


Millimeter wave (mm-wave) communication is one of the key enabling technologies for meeting the requirements of the fifth generation (5G) wireless communication systems. It is, therefore, essential to have accurate information about the mm-wave radio channel characteristics for successful deployment of these systems. There are many recent mm-wave channel characterization measurements reported worldwide. However, no such measurements were reported in the Arabian Peninsula, where the environment along with the building design and architecture are different from other regions in the world. This paper tries to fill that gap and presents the results of an mm-wave measurement campaign conducted at the American University of Sharjah (AUS) campus in the United Arab Emirates (UAE) during the period of November 2018 to January 2019. The results of the large-scale characterization (path loss and shadow fading) are presented for both indoor and outdoor environments at 28 GHz. Furthermore, the penetration loss and reflection coefficients for materials commonly used in the facades of building structures in the UAE are measured at the same frequency.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16


  1. 1.

    3GPP: 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Release 15 Description; Summary of Rel-15 Work Items (Release 15) (2019).

  2. 2.

    Abo Rahama, M., Hatahet, Y., Zakaria, A., Ismail, M. H., & El-Tarhuni, M. (2019). Large-scale channel measurements at 28 GHz in the United Arab Emirates for 5G systems. In: 2019 IEEE Radio and Wireless Symposium (RWS).

  3. 3.

    Ai, B., Guan, K., He, R., Li, J., Li, G., He, D., et al. (2017). On indoor millimeter wave massive MIMO channels: Measurement and simulation. IEEE Journal on Selected Areas in Communications, 35(7), 1678–1690.

  4. 4.

    Ali, M. M., & Moon, K. S. (2007). Structural developments in tall buildings: Current trends and future prospects. Architectural Science Review, 50(3), 205–223.

  5. 5.

    for Backhaul, M. M. W .E. (2014). Access: Public deliverable 5.1: Channel modeling and characterization. Tech. rep.

  6. 6.

    Bas, C. U., Wang, R., Sangodoyin, S., Hur, S., Whang, K., Park, J., Zhang, J., & Molisch, A. F. (2017). 28 GHz Microcell Measurement Campaign for Residential Environment. In: GLOBECOM 2017-2017 IEEE Global Communications Conference, pp. 1–6. IEEE.

  7. 7.

    Du, J., Chizhik, D., Feick, R., Castro, G., Rodríguez, M., & Valenzuela, R. A. (2018). Suburban residential building penetration loss at 28 GHz for fixed wireless access. IEEE Wireless Communications Letters, 7(6), 890–893.

  8. 8.

    Du, Y., Cao, C., Zou, X., He, J., Yan, H., Wang, G., & Steer, D. (2016). Measurement and modeling of penetration loss in the range from 2 GHz to 74 GHz. In: 2016 IEEE Globecom Workshops (GC Wkshps), pp. 1–6.

  9. 9.

    Ericsson: Ericsson Mobility Report (2019).

  10. 10.

    Ericsson: Internet of Things Forecast (2019).

  11. 11.

    Friis, H. T. (1946). A note on a simple transmission formula. Proceedings of the IRE, 34(5), 254–256.

  12. 12.

    Huang, J., Liu, Y., Wang, C. X., Sun, J., & Xiao, H. (2019). 5G Millimeter wave channel sounders, measurements, and models: Recent developments and future challenges. IEEE Communications Magazine, 57(1), 138–145.

  13. 13.

    Huang, J., Wang, C. X., Feng, R., Sun, J., Zhang, W., & Yang, Y. (2017). Multi-frequency mm-wave massive MIMO channel measurements and characterization for 5G wireless communication systems. IEEE Journal on Selected Areas in Communications, 35(7), 1591–1605.

  14. 14.

    Hur, S., Baek, S., Kim, B., Chang, Y., Molisch, A. F., Rappaport, T. S., et al. (2016). Proposal on millimeter-wave channel modeling for 5G cellular system. IEEE Journal of Selected Topics in Signal Processing, 10(3), 454–469.

  15. 15.

    Isa, A.K.M., Nix, A., & Hilton, G. (2015). Material Characterisation for Short Range Indoor Environment in the Millimetre Wave Bands. In: 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), pp. 1–5. IEEE.

  16. 16.

    Ko, J., Lee, K., Cho, Y. J., Oh, S., Hur, S., Kang, N. G., et al. (2016). Feasibility study and spatial-temporal characteristics analysis for 28 GHz outdoor wireless channel modelling. IET Communications, 10(17), 2352–2362.

  17. 17.

    Landron, O., Feuerstein, M. J., & Rappaport, T. S. (1993). In situ microwave reflection coefficient measurements for smooth and rough exterior wall surfaces. In: IEEE 43rd Vehicular Technology Conference, pp. 77–80 .

  18. 18.

    Maccartney, G. R., Rappaport, T. S., Sun, S., & Deng, S. (2015). Indoor office wideband millimeter-wave propagation measurements and channel models at 28 and 73 GHz for ultra-dense 5G wireless networks. IEEE Access, 3, 2388–2424.

  19. 19.

    Mahapatra, S. K., Mohapatra, S. K., Behera, S., & Kanoje, L. (2015) . An experimental analysis of penetration loss around buildings of an institution. In: 2015 International Conference on Green Computing and Internet of Things (ICGCIoT), pp. 75–76 .

  20. 20.

    Murdock, J. N., Ben-Dor, E., Qiao, Y., Tamir, J. I., & Rappaport, T. S. (2012). A 38 GHz cellular outage study for an urban outdoor campus environment. In: 2012 IEEE wireless communications and networking conference (WCNC), pp. 3085–3090. IEEE.

  21. 21.

    Nguyen, S.L., Jarvelainen, J., Karttunen, A., Haneda, K., Putkonen, J.: Comparing radio propagation channels between 28 and 140 GHz bands in a shopping mall (2018).

  22. 22.

    Raghavan, V., Partyka, A., Sampath, A., Subramanian, S., Koymen, O. H., Ravid, K., et al. (2018). Millimeter-wave MIMO prototype: measurements and experimental results. IEEE Communications Magazine, 56(1), 202–209.

  23. 23.

    Rappaport, T. S., MacCartney, G. R., Samimi, M. K., & Sun, S. (2015). Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design. IEEE Transactions on Communications, 63(9), 3029–3056.

  24. 24.

    Rappaport, T. S., Murdock, J. N., & Gutierrez, F. (2011). State of the art in 60-ghz integrated circuits and systems for wireless communications. pp. 1390–1436 .

  25. 25.

    Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work!. IEEE Access, 1, 335–349.

  26. 26.

    Rappaport, T. S., Xing, Y., MacCartney, G. R., Molisch, A. F., Mellios, E., & Zhang, J. (2017). Overview of millimeter wave communications for fifth-generation (5G) wireless networks—with a focus on propagation models. IEEE Transactions on Antennas and Propagation, 65(12), 6213–6230.

  27. 27.

    Samimi, M., Wang, K., Azar, Y., Wong, G. N., Mayzus, R., Zhao, H., Schulz, J. K., Sun, S., Gutierrez, F., & Rappaport, T. S. (2013). 28 GHz angle of arrival and angle of departure analysis for outdoor cellular communications using steerable beam antennas in New York City. In: 2013 IEEE 77th Vehicular Technology Conference (VTC Spring), pp. 1–6.

  28. 28.

    Sun, S., Rappaport, T. S., Shafi, M., Tang, P., Zhang, J., & Smith, P. J. (2018). Propagation models and performance evaluation for 5G millimeter-wave bands. IEEE Transactions on Vehicular Technology, 67(9), 8422–8439.

  29. 29.

    Vargas, C. E. O., da Silva Mello, L., & Rodriguez, R. C. (2017). Measurements of construction materials penetration losses at frequencies from 26.5 GHz to 40 GHz. In: 2017 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM), pp. 1–4.

  30. 30.

    Wu, X., Zhang, Y., Wang, C. X., Goussetis, G., Alwakeel, M. M., et al. (2015). 28 GHz indoor channel measurements and modelling in laboratory environment using directional antennas. In: 2015 9th European Conference on Antennas and Propagation (EuCAP), pp. 1–5. IEEE.

  31. 31.

    Zhang, G., Saito, K., Fan, W., Cai, X., Hanpinitsak, P., Takada, Ji, et al. (2018). Experimental characterization of millimeter-wave indoor propagation channels at 28 GHz. IEEE Access, 6, 76516–76526.

  32. 32.

    Zhao, H., Mayzus, R., Sun, S., Samimi, M., Schulz, J. K., Azar, Y., Wang, K., Wong, G. N., Gutierrez, F., & Rappaport, T. S. (2013). 28 GHz millimeter wave cellular communication measurements for reflection and penetration loss in and around buildings in New York City. In: 2013 IEEE International Conference on Communications (ICC), pp. 5163–5167.

  33. 33.

    Zhao, X., Li, S., Wang, Q., Wang, M., Sun, S., & Hong, W. (2017). Channel measurements, modeling, simulation and validation at 32 GHz in outdoor microcells for 5G radio systems. IEEE Access, 5, 1062–1072.

Download references


This work is supported by two Faculty Research Grants (FRG16-R-25 and EFRG18-SCR-CEN-31) from the American University of Sharjah.

Author information

Correspondence to Mahmoud H. Ismail.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aborahama, M., Zakaria, A., Ismail, M.H. et al. Large-scale channel characterization at 28 GHz on a university campus in the United Arab Emirates. Telecommun Syst (2020).

Download citation


  • 5G
  • 28 GHz
  • Millimeter wave propagation measurements
  • Channel models
  • Pathloss
  • Penetration loss
  • Reflection coefficient