An enhanced frequency-domain contention scheme for IEEE 802.11 WLANs

  • Haithem Al-MeflehEmail author
  • Osameh Al-Kofahi


Frequency-domain contention is a new paradigm of contention that has been proposed to enhance the performance of OFDM wireless networks. In this paper, we demonstrate how frequency-domain contention schemes would fail in a wireless local area network (WLAN) due to the existence of nodes that are hidden from each other. In addition, we propose a new MAC protocol, which is called EFDC (enhanced frequency-domain contention), that solves the failure problem without sacrificing performance in a WLAN. Simulation is used to evaluate and compare EFDC to the T2F (time-to-frequency) protocol and IEEE 802.11 contention method. The results show that EFDC achieves higher performance in terms of throughput and delay.


Wireless networks Medium-access control (MAC) protocols IEEE 802.11 Frequency-domain contention Hidden terminal problem 



The authors would like to thank Dr. Mahmoud Al-Sobh (Associate Professor, Department of English Language and Literature, Ajloan National University, Jordan, for his valuable time and comments in reviewing the paper.


  1. 1.
    Malik, A., Qadir, J., Ahmad, B., Yau, K. L. A., & Ullah, U. (2015). QoS in IEEE 802.11-based wireless networks: A contemporary review. Journal of Network and Computer Applications, 55, 24–46.CrossRefGoogle Scholar
  2. 2.
    Omar, H. A., Abboud, K., Cheng, N., Malekshan, K. R., Gamage, A. T., & Zhuang, W. (2016). A survey on high efficiency wireless local area networks: Next generation WiFi. IEEE Communications Surveys & Tutorials, 18(4), 2315–2344.CrossRefGoogle Scholar
  3. 3.
    Fang, J., Tan, K., Zhang, Y., Chen, S., Shi, L., Zhang, J., et al. (2013). Fine-grained channel access in wireless LAN. IEEE/ACM Transactions on Networking (TON), 21(3), 772–787.CrossRefGoogle Scholar
  4. 4.
    Al-Mefleh, H., & Al-Kofahi, O. (2018). Frequency-domain contention and polling MAC protocols in IEEE 802.11 wireless networks: A survey. Computer Communications, 129, 1–18.CrossRefGoogle Scholar
  5. 5.
    Sen, S., Choudhury, R. R., & Nelakuditi, S. (2011). Listen before you talk, but on the frequency domain. ACM SIGMOBILE Mobile Computing and Communications Review, 14(4), 7–9.CrossRefGoogle Scholar
  6. 6.
    Yomo, H., Nguyen, C. H., Kyritsi, P., Nguyen, T. D., Prasad, R., & Chakraborty, S. S. (2005). PHY and MAC performance evaluation of IEEE 802.11 a WLAN over fading channels. IETE Journal of Research, 51(1), 83–94.CrossRefGoogle Scholar
  7. 7.
    IEEE Std 802.11a-1999: Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications Amendment 1: High-speed Physical Layer in the 5 GHz bandGoogle Scholar
  8. 8.
    IEEE Std 802.11-2012: Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) SpecificationsGoogle Scholar
  9. 9.
    Jain, R., Chiu, D., & Hawe, W. (1984) A quantitative measure of fairness and discrimination for resource allocation in shared computer systems. DEC Research Report TR-301Google Scholar
  10. 10.
    Al-Mefleh, H. (2017). SEMP: Self-elimination MAC protocol for IEEE 802.11 wireless networks. Wireless Personal Communications, 94(3), 755–776.CrossRefGoogle Scholar
  11. 11.
    Zhang, C., Chen, P., Ren, J., Wang, X., & Vasilakos, A. V. (2017). A backoff algorithm based on self-adaptive contention window update factor for IEEE 802.11 DCF. Wireless Networks, 23(3), 749–758.CrossRefGoogle Scholar
  12. 12.
    Cheng, M. H., Chiang, C. I., Hwang, W. S., Wu, Y. J., & Lin, C. H.: (2018). An adaptive state backoff algorithm for wireless mesh networks. In 2018 IEEE international conference on applied system invention (ICASI) (pp. 953–956). IEEEGoogle Scholar
  13. 13.
    Chong, W. K., Drieberg, M., & Jeoti, V. (2018). Mitigating false blocking problem in wireless ad hoc networks. Telecommunication Systems, 67(1), 31–46.CrossRefGoogle Scholar
  14. 14.
    Al-Mefleh, H., & Chang, J.M. (2008) Turning hidden nodes into helper nodes in IEEE 802.11 wireless LAN networks. In International conference on research in networking (pp. 824–835). Springer.Google Scholar
  15. 15.
    Ali, M. Z., Mišić, J., & Mišić, V. B. (2018) Impact of hidden nodes on uplink transmission in IEEE 802.11 ax heterogeneous network. In 2018 14th International wireless communications & mobile computing conference (IWCMC) (pp. 118–123). IEEE.Google Scholar
  16. 16.
    Akande, D. O., Salleh, M. F. M., & Ojo, F. K. (2018). MAC protocol for cooperative networks, design challenges, and implementations: A survey. Telecommunication Systems, 69(1), 95–111. CrossRefGoogle Scholar
  17. 17.
    Akimoto, K., Kameda, S., & Suematsu, N. (2018). Optimum allocation scheme for user fairness of location-based virtual sector method solving hidden terminal problem in WLAN. IEEE transactions on vehicular technology.Google Scholar
  18. 18.
    Al-Mefleh, H., & Al-Kofahi, O. (2016). Taking advantage of jamming in wireless networks: A survey. Computer Networks, 99, 99–124.CrossRefGoogle Scholar
  19. 19.
    Sen, S., Roy Choudhury, & R., Nelakuditi, S. (2011) No time to countdown: Migrating backoff to the frequency domain. In Proceedings of the 17th annual international conference on Mobile computing and networking (pp. 241–252). ACM.Google Scholar
  20. 20.
    Feng, X., Zhang, J., Zhang, Q., & Li, B. (2012) Use your frequency wisely: Explore frequency domain for channel contention and ACK. In INFOCOM, 2012 proceedings IEEE (pp. 549–557). IEEE.Google Scholar
  21. 21.
    Roman, B., Wassell, I., & Chatzigeorgiou, I. (2011). Scalable cross-layer wireless access control using multi-carrier burst contention. IEEE Journal on Selected Areas in Communications, 29(1), 113–128.CrossRefGoogle Scholar
  22. 22.
    Tan, K., Fang, J., Zhang, Y., Chen, S., Shi, L., Zhang, J., et al. (2011). Fine-grained channel access in wireless LAN. ACM SIGCOMM Computer Communication Review, 41(4), 147–158.CrossRefGoogle Scholar
  23. 23.
    Zarinni, F., & Das, S. R. (2012) btFICA MAC protocol for high data rate WLANs. In 2012 21st International conference on computer communications and networks (ICCCN) (pp. 1–9). IEEE.Google Scholar
  24. 24.
    Saha, D., Dutta, A., Grunwald, D., & Sicker, D. (2009) PHY aided MAC—A new paradigm. In INFOCOM 2009, IEEE (pp. 2986–2990). IEEE.Google Scholar
  25. 25.
    Lin, J., Liang, W., Yu, H., & Xiao, Y. (2015). Polling in the frequency domain: A new MAC protocol for industrial wireless network for factory automation. International Journal of Ad Hoc and Ubiquitous Computing, 20(4), 211–222.CrossRefGoogle Scholar
  26. 26.
    Zheng, M., Lin, J., Liang, W., & Yu, H. (2015). A priority-aware frequency domain polling MAC protocol for OFDMA-based networks in cyber-physical systems. IEEE/CAA Journal of Automatica Sinica, 2(4), 412–421.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Computer Engineering DepartmentYarmouk UniversityIrbidJordan

Personalised recommendations