Advertisement

A survey on channel coding techniques for 5G wireless networks

  • Komal AroraEmail author
  • Jaswinder Singh
  • Yogeshwar Singh Randhawa
Article
  • 73 Downloads

Abstract

Although 4G (fourth generation) i.e. LTE (long term evolution) systems are now in use world-wide. But today’s 4G systems have some challenges left such as spectrum scarcity and energy efficiency. The prime objectives of near-by-future 5G (fifth generation) wireless communications are reliability, higher data rate, higher bandwidth, high spectrum efficiency, higher energy efficient and that too at lower latency. Channel coding tend to increase the reliability of the wireless communications system by adding extra bits in a controlled fashion and is considered to be most persuasive element of communication system. 4G LTE Turbo Codes have already been replaced by LDPC (low density parity check) Codes in many of the standards including mMTC (massive machine type communication), D2D (device to device communication) and URLLC (ultra-reliable low latency reliable communications). LDPC Codes and Polar Codes are securing much more observation because of their inherent advantages of excellent bit-error-rate performance, fast encoding and decoding procedures; which make them the strong contenders for 5G Channel Codes too. This paper provides the broad survey and comparison of the LDPC and Polar Codes along with their advantages and drawbacks which will aid in further improvement of the next generation wireless networks. In order to enlighten future research possibilities in this direction, issues addressed by distinct researchers have been explored too.

Keywords

LDPC Polar Channel coding 5G 

Abbreviations

LTE

Long term evolution

IoT

Internet of things

LDPC

Low density parity check

SNR

Signal to noise ratio

FEC

Forward error correction

mMTC

Massive machine type communication

D2D

Device to device communication

URLLC

Ultra-reliable low latency reliable communications

AMPS

Advanced mobile phone systems

NTT

Nippon telegraph and telephone

TACS

Total access communications system

IS-95

Interim standard 95

PDC

Pacific digital cellular systems

GPRS

General packet radio service

EDGE

Enhanced data rate for GSM evolution

UMTS

Universal mobile telecommunication systems

HSPA

High speed packet access

CDMA

code division multiple access

BSC

Base station controller

RNC

Radio network controller

TDMA

Time division multiple access

GSM

Global system for mobile

FDMA

Frequency division multiple access

WCDMA

Wideband code division multiple access

UMTS

Universal mobile telecommunication system

HSPA

High speed packet access

EvDO

Evolution data optimized

QPSK

Quadrature phase shift keying

OFDMA

Orthogonal frequency division multiple access

SC-FDMA

Single carrier frequency division multiple access

S-OFDMA

Scalable orthogonal frequency division multiple access

BDMA

Beam division multiple access

FBMC

Filter bank multiple carrier multiple access

BCH

Bose–Chaudhuri–Hocquenghem Codes

LT

Luby transform codes

UWB

Ultra wide band communications

SE

Spectral efficiency

NBLC

Non-binary LDPC codes

PCM

Parity check matrix

BG

Bi-partite graph

RLDPC

Regular LDPC codes

IRLDPC

Irregular LDPC Codes

CP

Closed path

CG

Connected graph

SG

Sub graph

ISG

Induces sub-graph

TC

Trapping cycle

ETC

Elementary trapped cycle

ML

Maximum likelihood

LR

Likelihood ratio

LLR

Log likelihood ratio

AWGN

Additive white Gaussian noise

BDC

Binary discrete channels

SC

Successive cancellation

SSC

Simplified successive cancellation

LSC

List successive cancellation

CRC

Cyclic redundancy check

MPA

Message passing algorithm

AMA

Addition–multiplication algorithm

MS

Min–sum algorithm

WB

Weighted bit-flicking

BS

Boot-strapping

WC

Weighing-coefficient

QAMA

Q-ary addition–multiplication algorithm

EMSA

Elongated minimum–sum algorithm

TEMSA

Trellis-based-EMSA

DP

Deviation paths

FPMSA

Fixed path minimum sum algorithm

GF

Galois field

BER

Bit error rate

RW

Re-weighing

RS

Re-scheduling

RBPA

Residual-belief-propagation-algorithm

NBPA

Node-wise-belief-propagation-algorithm

LBPA

Layered-belief-propagation-algorithm

DSOC

Deep Space optical communications

HSC

Helicopter satellite communications

PPMBPC

PPM based Poisson channel

QC-LDPC

Quasi-cyclic LDPC Codes

MCS

Mobile-satellite communication system

MIMO

Multiple input multiple output

Notes

References

  1. 1.
    Turjman, F. A. (2017). Cognitive caching for the future sensors in fog networking. Pervasive Mobile Computing,42, 317–334.CrossRefGoogle Scholar
  2. 2.
    Salah, A. A., & Turjman, F. A. (2018). Low complexity parity check code for futuristic wireless networks applications. IEEE Access,6, 18398–18407.CrossRefGoogle Scholar
  3. 3.
    Niu, K., Chen, K., Lin, J., & Zhang, Q. T. (2014). Polar codes: Primary concepts and practical decoding algorithms. IEEE Communications Magazine,52(7), 192–203.CrossRefGoogle Scholar
  4. 4.
    Berrou, C., & Glavieux, A. (1996). Near optimum error correcting coding and decoding: Turbo-codes. IEEE Transactions on Communications,44, 1261–1271.CrossRefGoogle Scholar
  5. 5.
    MacKay, D. J. C., & Neal, R. M. (1997). Near shannon limit performance of low density parity check codes. Electronics Letters,33, 457–458.CrossRefGoogle Scholar
  6. 6.
    MacKay, D. J. C. (1999). Good error-correcting codes based on very sparse matrices. IEEE Transactions on Information Theory,45(2), 399–431.CrossRefGoogle Scholar
  7. 7.
    Richardson, T., & Urbanke, R. (2001). The capacity of low-density parity-check codes under message-passing decoding. IEEE Transactions on Information Theory,47, 599–618.CrossRefGoogle Scholar
  8. 8.
    Spielman, D. (1996). Linear-time encodable and decodable error-correcting codes. IEEE Transactions on Information Theory,42(6), 1723–1731.CrossRefGoogle Scholar
  9. 9.
    Luby, M. G., Mitzenmacher, M., Shokrollahi, M. A., Spielman, D. A., & Stemann, V. (1997). Practical loss-resilient codes. In Proceedings of 29th annual ACM symposium on theory of computing (pp. 150–159).Google Scholar
  10. 10.
    Richardson, T., & Urbanke, R. (2001). Efficient encoding of low-density parity-check codes. IEEE Transactions on Information Theory,47(2), 638–656.CrossRefGoogle Scholar
  11. 11.
    Richardson, T., Shokrollahi, M., & Urbanke, R. (2001). Design of capacity approaching irregular low-density parity-check codes. IEEE Transactions on Information Theory,47(2), 619–637.CrossRefGoogle Scholar
  12. 12.
    ten Brink, S. (2001). Convergence behavior of iteratively decoded parallel concatenated codes. IEEE Transactions on Communications,49(10), 1727–1737.CrossRefGoogle Scholar
  13. 13.
    Brink, S., Kramer, G., & Ashikhmin, A. (2004). Design of low-density parity-check codes for modulation and detection. IEEE Transactions on Communications,52(4), 670–678.CrossRefGoogle Scholar
  14. 14.
    Ashikhmin, A., Kramer, G., & Brink, S. (2004). Extrinsic information transfer functions: Model and erasure channel properties. IEEE Transactions on Information Theory,50(11), 2657–2673.CrossRefGoogle Scholar
  15. 15.
    Prayogo, G. K., Putra, R., Prasetyo, A. H., & Suryanegara, M. (2018). A 5G new radio LDPC coded NOMA scheme supporting high user load for massive MTC. In International conference on information technology and electrical engineering (ICITEE) (pp. 170–174).Google Scholar
  16. 16.
    Wu, X., Jiang, M., Zhao, C., Ma, L., & Wei, Y. (2018). Low-rate PBRL-LDPC codes for URLLC in 5G. IEEE Wireless Communications Letters.,7(5), 800–803.CrossRefGoogle Scholar
  17. 17.
    Sharma, A, & Salim, M. (2017). Polar Code: The Channel Code contender for 5G scenarios. In International conference on computer, communications and electronics (Comptelix) (pp. 676–682).Google Scholar
  18. 18.
    Wang, R., & Rongke, L. A. (2014). Novel puncturing scheme for polar codes. IEEE Communication on Letters,18(12), 2081–2083.CrossRefGoogle Scholar
  19. 19.
    Arıkan, E. (2009). Channel polarization: A method for constructing capacity-achieving codes. IEEE Transactions on Information Theory,55(7), 3051–3073.CrossRefGoogle Scholar
  20. 20.
    Marconi, G. (1899). Wireless telegraphy. Journal of the Institution of Electrical Engineers,28(139), 273–290.CrossRefGoogle Scholar
  21. 21.
    Sofi, I. B., & Gupta, A. (2018). A survey on energy efficient 5G green network with a planned multi-tier architecture. Journal of Network and Computer Applications,118, 1–28.CrossRefGoogle Scholar
  22. 22.
    Khan, F. (2009). LTE for 4G mobile broadband: Air interface technologies and performance. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  23. 23.
    Khan, M. N., Gilani, S. O., Jamil, M., Rafay, A., et al. (2018). Maximizing throughput of hybrid FSO-RF communication system: An algorithm. IEEE Access,6, 30039–30048.CrossRefGoogle Scholar
  24. 24.
    Yang, L., Xie, Y., Yuan, J., Cheng, X., & Wan, L. (2018). Chained LDPC codes for future communication systems. IEEE Communications Letters,22(5), 898–901.CrossRefGoogle Scholar
  25. 25.
    Andrews, J. G., Buzzi, S., Choi, W., et al. (2014). What will 5G be. IEEE Journal on Selected Areas in Communications,32(6), 1065–1082.CrossRefGoogle Scholar
  26. 26.
    Kong, L., Khan, M. K., Wu, F., Chen, G., & Zeng, P. (2017). Millimeter-wave wireless communications for IoT-cloud supported autonomous vehicles: Overview, design, and challenges. IEEE Communications Magazine,55(1), 62–68.CrossRefGoogle Scholar
  27. 27.
    Liang, Z., Zang, J., Yang, X., Dong, X., & Song, H. (2017). Low-density parity-check codes for noncoherent UWB communication systems. China Communications,14(7), 1–11.CrossRefGoogle Scholar
  28. 28.
    Hung-Ta, P., Han, Y. S., & Chu, Y. J. (2011). New HARQ scheme based on decoding of tail-biting convolutional codes in IEEE 802.16e. IEEE Transactions on Vehicular Technology,60(3), 912–918.CrossRefGoogle Scholar
  29. 29.
    GPP TSG-RAN WG1 #86. (2016). Discussion on outer coding on eMBB data. LG Electronics.Google Scholar
  30. 30.
    Peng, R. H., & Chen, R. R. (2006). Application of non-binary LDPC codes for communication over fading channels using higher order modulations. In Proceedings of IEEE global communications conference (GLOBECOM). Google Scholar
  31. 31.
    Feng, D., Xu, H., Zheng, J., & Bai, B. (2018). Nonbinary LDPC-coded spatial modulation. IEEE Transactions on Wireless Communications,17(4), 2786–2799.CrossRefGoogle Scholar
  32. 32.
    Chen, X., & Wang, C. L. (2012). High-throughput efficient non-binary LDPC decoder based on the simplified min-sum algorithm. IEEE Transactions on Circuits and Systems,59(11), 2784–2794.CrossRefGoogle Scholar
  33. 33.
    Shannon, C. E.(1948). A mathematical theory of communication. Bell System Technical Journal, 27:379–423, 623–656.CrossRefGoogle Scholar
  34. 34.
    Calderbank, A., & Mazo, J. (1984). A new description of trellis codes. IEEE Transactions on Information Theory,30(6), 784–791.CrossRefGoogle Scholar
  35. 35.
    Lin, S., & Costello, D. J. (2004). Error control coding: Fundamentals and applications (2nd ed.). Upper Saddle River, NJ: Prentice-Hall.Google Scholar
  36. 36.
    Xiao, H., & Banihashemi, A. H. (2009). Error rate estimation of low-density parity-check codes on binary symmetric channels using cycle enumeration. IEEE Trans. Communications,57(6), 1550–1555.CrossRefGoogle Scholar
  37. 37.
    Karimi, M., & Banihashemi, A. H. (2014). On characterization of elementary trapping sets of variable-regular LDPC codes. IEEE Transactions on Information Theory,60(9), 5188–5203.CrossRefGoogle Scholar
  38. 38.
    Halford, T. R., & Chugg, K. M. (2006). An algorithm for counting short cycles in bipartite graphs. IEEE Transactions on Information Theory,52(1), 287–292.CrossRefGoogle Scholar
  39. 39.
    Asvadi, R., Banihashemi, A. H., & Attari, M. A. (2011). Lowering the error floor of LDPC codes using cyclic liftings. IEEE Transactions on Information Theory,57(4), 2213–2224.CrossRefGoogle Scholar
  40. 40.
    Karimi, M., & Banihashemi, A. H. (2012). Efficient algorithm for finding dominant trapping sets of LDPC codes. IEEE Transactions on Information Theory,58(11), 6942–6958.CrossRefGoogle Scholar
  41. 41.
    Hashemi, Y., & Banihashemi, A. H. (2015). On characterization and efficient exhaustive search of elementary trapping sets of variable-regular LDPC codes. IEEE Communications Letters,19(3), 323–326.CrossRefGoogle Scholar
  42. 42.
    Tanner, R. (1981). A recursive approach to low complexity codes. IEEE Transactions on Information Theory,27(5), 33–47.CrossRefGoogle Scholar
  43. 43.
    Ryan, W. E., & Lin, S. (2009). Channel codes: Classical and modern (1st ed.). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  44. 44.
    Kocarev, L., Lehmann, F., Maggio, G., Scanavino, B., et al. (2006). Nonlinear dynamics of iterative decoding systems: Analysis and applications. IEEE Transactions on Information Theory,52, 1366–1384.CrossRefGoogle Scholar
  45. 45.
    Forney, G. D. (1997). On iterative decoding and the two-way algorithm. In Proceedings of international symposium on turbo codes and related topics brest, France (pp. 12–25).Google Scholar
  46. 46.
    Matuz, B., Paolini, E., Zabini, F., & Liva, G. (2017). Non-binary LDPC code design for the Poisson PPM channel. IEEE Transactions on Communications,65(11), 4600–4611.CrossRefGoogle Scholar
  47. 47.
    Vatta, F., Soranzo, A., & Babich, F. (2018). Low-complexity bound on irregular LDPC belief-propagation decoding thresholds using a Gaussian approximation. Electronics Letters,54(17), 1038–1040.CrossRefGoogle Scholar
  48. 48.
    Clevorn, T., & Vary P. (2004). Low-complexity belief propagation by approximations with lookup-tables. In Proceedings of 5th international ITG conference on source and channel coding (SCC), Erlangen, Germany (pp. 211–216).Google Scholar
  49. 49.
    Wadayama, T., Nakamura, K., Yagita, M., et al. (2010). Gradient descent bit flipping algorithms for decoding LDPC codes. IEEE Transactions on Communications,58(6), 1610–1614.CrossRefGoogle Scholar
  50. 50.
    Sundararajan, G., Winstead, C., & Boutillon, E. (2014). Noisy gradient descent bit-flip decoding for decoding LDPC codes. IEEE Transactions on Communications,62(10), 3385–3400.CrossRefGoogle Scholar
  51. 51.
    Huang, Q., Song, L., & Wang, Z. (2017). Set message-passing decoding algorithms for regular non-binary LDPC codes. IEEE Transactions on Communications,65(12), 5110–5122.CrossRefGoogle Scholar
  52. 52.
    Davey, M. C., & MacKay, D. J. C. (1998). Low density parity check codes over GF(q). Information theory workshop.Google Scholar
  53. 53.
    MacKay, D. J. C., Wilson, S. T., & Davey, M. C. (1999). Comparison of constructions of irregular Gallager codes. IEEE Transactions on Communications,47(10), 1449–1454.CrossRefGoogle Scholar
  54. 54.
    Li, Z., Chen. L., Zeng, L., Lin, S., & Fong, F. H. (2006). Efficient encoding of quasi-cyclic low-density parity-check codes 54(1), 71–81.Google Scholar
  55. 55.
    Huang, Q., Tang, L., He, S., Xiong, Z., & Wang, Z. (2014). Low-complexity encoding of quasi-cyclic codes based on Galois fourier transform. IEEE Transactions on Communications,62(6), 1757–1767.CrossRefGoogle Scholar
  56. 56.
    Zhang, J., & Fossorier, M. P. C. (2004). A modified weighted bit-flipping decoding of low-density parity-check codes. IEEE Communications Letters,8(3), 165–167.CrossRefGoogle Scholar
  57. 57.
    Nouh, A., & Banihashemi, A. H. (2002). Bootstrap decoding of low-density parity-check codes. IEEE Communications Letters,6(9), 391–393.CrossRefGoogle Scholar
  58. 58.
    Oh, J., & Ha, J. (2018). A two-bit weighted bit-flipping decoding algorithm for LDPC codes. IEEE Communications Letters,22(5), 874–877.CrossRefGoogle Scholar
  59. 59.
    Li, E., Gunnam, K., & Declercq, D. (2011). Trellis based extended Min-Sum for decoding non-binary LDPC codes. In Proceedings of IEEE international symposium on wireless communication systems (pp. 46–50).Google Scholar
  60. 60.
    Davey, M. C., & MacKay, D. J. C. (1998). Low density parity check codes over GF(q). Ireland: ITW.Google Scholar
  61. 61.
    Sason, I., & Shamai, S. (2000). Improved upper bounds on the ensemble performance of ML decoded low density parity check codes. IEEE Communication Letters,4(3), 88–91.CrossRefGoogle Scholar
  62. 62.
    Healy, C., Shao, Z., Oliveira, R. M., et al. (2018). Knowledge-aided informed dynamic scheduling for LDPC decoding of short blocks. IET Communications,12(9), 1094–1101.CrossRefGoogle Scholar
  63. 63.
    Korada, S. B., Soglu, S., & Urbanke, R. (2010). Polar codes: Characterization of exponent, bounds, constructions. IEEE Transactions on Information Theory,56(12), 6253–6264.CrossRefGoogle Scholar
  64. 64.
    Mughal, S., Yang, F., Xu, H., et al. (2018). Coded cooperative spatial modulation based on multi-level construction of polar code. Telecommunications Systems.  https://doi.org/10.1007/s11235-018-0485-6.CrossRefGoogle Scholar
  65. 65.
    Fossorier, M. P. C. (2001). Iterative reliability-based decoding of low-density parity check codes. IEEE Journal on Selected Areas in Communications,19(5), 908–917.CrossRefGoogle Scholar
  66. 66.
    Wu, X., Jiang, M., & Zhao, C. (2017). A parity structure for scalable QC-LDPC codes with all nodes of degree three. IEEE Communications Letters,21(9), 1913–1916.CrossRefGoogle Scholar
  67. 67.
    Chen, C., Wang, L., & Liu, S. (2018). The design of protograph LDPC codes as source codes in a JSCC system. IEEE Communications Letters,22(4), 672–675.CrossRefGoogle Scholar
  68. 68.
    Shahbaz, S., Akhbari, B., & Asvadi, R. (2018). LDPC codes over Gaussian multiple access wiretap channel. IET Communications,12(8), 962–969.CrossRefGoogle Scholar
  69. 69.
    Kim, M., Kim, B. H., & Ahn, J. K. (2017). Secure polar coding with REP and XOR coding. IEEE Communications Letters,21(10), 2126–2129.CrossRefGoogle Scholar
  70. 70.
    Shao, S., Hailes, P., Wang, T.-Y., Wu, J.-Y., Maunder, R. G., Al-Hashimi, B. M., & Hanzo, L. (2019). Survey of turbo, LDPC and polar decoder ASIC implementations. IEEE Communications Surveys & Tutorials. Google Scholar
  71. 71.
    Chen, K., Niu, K., & Lin, J. R. (2012). List successive cancellation decoding of polar codes. IEEE Electronics Letters,48(9), 500–501.CrossRefGoogle Scholar
  72. 72.
    Kong, B. Y., Yoo, H., & Park, I. C. (2016). Efficient sorting architecture for successive cancellation list decoding of polar codes. IEEE Transactions on Circuits and Systems II: Express Briefs,63(7), 673–677.CrossRefGoogle Scholar
  73. 73.
    Bocharova, I. E., Kudryashov, B. D., Skachek, V., & Yakimenka, Y. (2018). BP-LED decoding algorithm for LDPC codes over AWGN channels. IEEE Transactions on Information Theory,65(3), 1677–1693.CrossRefGoogle Scholar
  74. 74.
    Boutillon, E. (2018). Optimization of non binary parity check coefficients. IEEE Transactions on Information Theory,65(4), 2092–2100.CrossRefGoogle Scholar
  75. 75.
    Khazraie, S., Asvadi, R., & Banihashemi, A. H. (2012). A PEG construction of finite-length LDPC codes with low error floor. IEEE Communications Letters,16(8), 1288–1291.CrossRefGoogle Scholar
  76. 76.
    Hashemi, S., Balatsoukas-Stimming, & Giard, P. (2016). Partitioned successive-cancellation list decoding of polar codes. In Proceedings of IEEE international conference on acoustics, speech and signal process. Shanghai, China (pp. 957–960).Google Scholar
  77. 77.
    Hashemi, S., Mondelli, M., & Hamed, S. (2018). Decoder partitioning: Towards practical list decoding of polar codes. IEEE Transactions on Communications,66(9), 3749–3759.CrossRefGoogle Scholar
  78. 78.
    Chen, P., Bai, B., Ren, Z., Wang, J., & Sun, S. (2019). Hash-polar codes with application to 5G. IEEE Access,7, 12441–12455.CrossRefGoogle Scholar
  79. 79.
    Wang, P., Yin, L., & Lu, J. (2018). Efficient helicopter-satellite communication scheme based on check-hybrid LDPC coding. Tsinghua Science and Technology,23(3), 323–332.CrossRefGoogle Scholar
  80. 80.
    Yang, Y., Wang, W., & Gao, X. (2018). AMP Dual-turbo iterative detection and decoding for LDPC coded multibeam MSC uplink. China Communications,15(6), 178–186.CrossRefGoogle Scholar
  81. 81.
    Azeem, M. M., Khan, A. B., & Azeem, U. (2017). Application of short erasure correcting codes for cognitive radio. In IEEE 86th vehicular technology conference (VTC-Fall).Google Scholar
  82. 82.
    Azmi, M. H., & Leib, Harry. (2018). Multichannel cooperative spectrum sensing that integrates channel decoding with fusion-based decision. IEEE Transactions on Aerospace and Electronic Systems,54(4), 1998–2014.CrossRefGoogle Scholar
  83. 83.
    Soliman, Samir S., & Song, Bongyong. (2017). Fifth generation (5G) cellular and the network for tomorrow: Cognitive and cooperative approach for energy savings. JNCA,85(1), 84–93.Google Scholar
  84. 84.
    Wang, X., Ge, T., Li, J., & Su, C. (2017). Efficient multi-rate encoder of QC-LDPC codes based on FPGA for WIMAX Standard. Chinese Journal of Electronics,26(2), 250–255.CrossRefGoogle Scholar
  85. 85.
    Uthansakul, M., & Uthansakul, P. (2011). Experiments with a low-profile beamforming MIMO system for WLAN applications. IEEE Antennas and Propagation Magazine,53(6), 56–69.CrossRefGoogle Scholar
  86. 86.
    Tsatsaragkos, I., & Paliouras, V. (2018). A reconfigurable LDPC decoder optimized for 802.11n/ac applications. IEEE Transactions on Very Large Scale Integration,26(1), 182–195.CrossRefGoogle Scholar
  87. 87.
    Pellenz, M. E., Souza, D. R., & Fonseca, M. S. P. (2010). Error control coding in wireless sensor networks. Telecommunication Systems,44(1), 61–68.CrossRefGoogle Scholar
  88. 88.
    Tsai, H.-C. (2019). Iterative multiuser detector-decoding for nonbinary LDPC coded multicarrier MFSK systems. Telecommunication Systems,70(2), 309–320.CrossRefGoogle Scholar
  89. 89.
    Hamming, R. W. (1950). Error detecting and error correcting codes. Bell System Technical Journal,29(2), 147–160.CrossRefGoogle Scholar
  90. 90.
    Golay, M. J. (1949). Notes on digital coding. In Proceedings of the IRE (vol. 37, p. 657).Google Scholar
  91. 91.
    Muller, D. E. (1954). Application of boolean algebra to switching circuit design and to error detection. Electronic Computers, Transactions of the IRE Professional Group,3, 6–12.CrossRefGoogle Scholar
  92. 92.
    Reed, I. (1954). A class of multiple-error-correcting codes and the decoding scheme. Information Theory, Transactions of the IRE Professional Group,4(4), 38–49.CrossRefGoogle Scholar
  93. 93.
    Bose, R. C., & Ray-Chaudhuri, D. K. (1960). On a class of error correcting binary group codes. Information and Control,3(1), 68–79.CrossRefGoogle Scholar
  94. 94.
    Reed, I. S., & Solomon, G. (1960). Polynomial codes over certain finite fields. Journal of the Society for Industrial and Applied Mathematics,8(2), 300–304.CrossRefGoogle Scholar
  95. 95.
    Costello, D. J., & Forney, G. D. (2007). Channel coding: The road to channel capacity. Proceedings of the IEEE,95, 1150–1177.CrossRefGoogle Scholar
  96. 96.
    Elias P. (1955). Coding for two noisy channels. In Proceedings Th. Theory (pp. 61–76).Google Scholar
  97. 97.
    Viterbi, A. J. (1967). Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transactions on Information Theory,13(2), 260–269.CrossRefGoogle Scholar
  98. 98.
    Bahl, L., Cocke, J., Jelinek, F., & Raviv, J. (1974). Optimal decoding of linear codes for minimizing symbol error rate. IEEE Transactions on Information Theory,20(2), 284–287.CrossRefGoogle Scholar
  99. 99.
    Consulative Committee for Space Data Systems (CCSDS). (1984).Telemetry channel coding. Silver Book.Google Scholar
  100. 100.
    Gallager, R. G. (1963). Low-density parity-check codes. Ph.D. thesis, Dep. Electrical Eng., M.I.T, Cambridge.Google Scholar
  101. 101.
    Arıkan, E. (2008). A performance comparison of polar codes and Reed–Muller Codes. IEEE Communications Letters,12(6), 447–449.CrossRefGoogle Scholar
  102. 102.
    Liang, H., Liu, A., Zhang, Y., & Zhang, Q. (2017). Analysis and adaptive design of polar coded HARQ transmission under SC-list decoding. IEEE Wireless Communications Letters,6(6), 798–801.CrossRefGoogle Scholar
  103. 103.
    Niu, K., & Chen, K. (2012). Stack decoding of polar codes. Electronics Letters,48(12), 695–696.CrossRefGoogle Scholar
  104. 104.
    Chen, K., Niu, K., & Lin, Jiaru. (2013). Improved successive cancellation decoding of polar codes. IEEE Transactions on Communications,61(8), 3100–3107.CrossRefGoogle Scholar
  105. 105.
    Li, B., Shen, H., & Tse, D. (2012). An adaptive successive cancellation list decoder for polar codes with cyclic redundancy check. IEEE Communications Letters,16(12), 2044–2047.CrossRefGoogle Scholar
  106. 106.
    Niu, K., & Chen, K. (2012). CRC-aided decoding of polar codes. IEEE Communications Letters,16(10), 1668–1671.CrossRefGoogle Scholar
  107. 107.
    Elkelesh, A., Ebada, M., Cammerer, S., & ten Brin, Stephan. (2018). Belief propagation list decoding of polar codes. IEEE Communication Letters,22(8), 1536–1539.CrossRefGoogle Scholar
  108. 108.
    OnurDizdar, Erdal Arıkan. (2016). A high-throughput energy-efficient implementation of successive cancellation decoder for polar codes using combinational logic. IEEE Transactions on Circuits and Systems,63(3), 436–447.CrossRefGoogle Scholar
  109. 109.
    Jiang, S., Mo, F., Lau, C. M., & Sham, C. W. (2018). Tree-permutation-matrix based LDPC codes. IEEE Transactions on Circuits and Systems,65(8), 1019–1023.Google Scholar
  110. 110.
    Kim, K. S., Lee, S. H., Kim, Y. H., & Ahn, J. Y. (2004). Design of binary LDPC code using cyclic shift matrices. Electronics letters,40(5), 325–326.CrossRefGoogle Scholar
  111. 111.
    Tasdighi, A., Banihashemi, A. H., & Sadeghi, M. R. (2017). Symmetrical constructions for regular Girth-8 QC-LDPC codes. IEEE Transactions on Communications,65(1), 14–22.Google Scholar
  112. 112.
    Diao, Q., Li, J., Lin, S., & Blake, I. F. (2016). New classes of partial geometries and their associated LDPC codes. IEEE Transactions on Information Theory,62(6), 2947–2965.CrossRefGoogle Scholar
  113. 113.
    Elsanadily, S., Mahran, A., & Elghandour, O. (2018). Classification-based algorithm for bit-flipping decoding of GLDPC codes over AWGN channels. IEEE Communications Letters,22(8), 1520–1523.CrossRefGoogle Scholar
  114. 114.
    He, X., Zhou, L., & Du, J. (2018). PEG-like design of binary QC-LDPC codes based on detecting and avoiding generating small cycles. IEEE Transactions on Communications,66(5), 1845–1858.CrossRefGoogle Scholar
  115. 115.
    Jiang, X. Q., Hai, H., Wang, H. M., & Lee, M. H. (2017). Constructing large Girth QC protograph LDPC codes based on PSD-PEG algorithm. IEEE Access,5, 13489–13500.CrossRefGoogle Scholar
  116. 116.
    Jiang, X., Xia, X. G., & Lee, M. H. (2014). Efficient progressive edge-growth algorithm based on Chinese remainder theorem. IEEE Transactions on Communications,62(2), 442–451.CrossRefGoogle Scholar
  117. 117.
    Gruner, A., & Huber, M. (2012). New combinatorial construction techniques for low-density parity-check codes and systematic repeat-accumulate codes. IEEE Transactions on Communications,60(9), 2387–2395.CrossRefGoogle Scholar
  118. 118.
    Wei, X., & Akansu, A. (2001). Density evolution for low-density parity-check codes under Max-Log-MAP decoding. Electronics Letters,37(18), 1125–1126.CrossRefGoogle Scholar
  119. 119.
    Mao, Y., & Banihashemi, A. H. (2001). Decoding low-density parity-check codes with probabilistic scheduling. IEEE Commuincation on Letters,5(10), 414–416.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Komal Arora
    • 1
    • 2
    Email author
  • Jaswinder Singh
    • 3
  • Yogeshwar Singh Randhawa
    • 4
  1. 1.IKG Punjab Technical UniversityJalandharIndia
  2. 2.Chandigarh Group of CollegesMohaliIndia
  3. 3.BCET (Affiliated to IKG Punjab Technical University)GurdaspurIndia
  4. 4.Lyallpur Khalsa College (Affiliated to IKG Punjab Technical University)JalandharIndia

Personalised recommendations