Telecommunication Systems

, Volume 72, Issue 4, pp 567–578 | Cite as

CJBR: connected junction-based routing protocol for city scenarios of VANETs

  • Khalid ZahediEmail author
  • Yasser Zahedi
  • Abdul Samad Ismail


In this work, a new routing protocol designed exclusively for improving the connectivity of junction-based routing in city scenarios of vehicular ad hoc networks is introduced. The main objective of this protocol is eliminating the dependency of routing paths construction’s process on the current available traffic density inside the road segments. To do so, the proposed CJBR protocol employs a multi-metric junction selection mechanism which depends on several metrics to select the best candidate junction to be the next data forwarder. The novelty of CJBR is represented by exploiting an enhanced group of the current road light poles in each road segment as a junction selection metric. Simulation results have shown an improvement in the packet delivery ratio and delay of CJBR compared to other junction-based protocols.


VANET Junction-based routing Connectivity RSUs Traffic density Junction’s selection 


Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. 1.
    Chen, C., Jin, Y., Pei, Q., & Zhang, N. (2014). A connectivity-aware intersection-based routing in VANETs. EURASIP Journal on Wireless Communications and Networking, 2014(1), 1.Google Scholar
  2. 2.
    Weigle, M. C., & Olariu, S. (2009). Vehicular networks: From theory to practice. Boca Raton: Chapman and Hall/CRC.Google Scholar
  3. 3.
    Li, C., Zhao, C., Zhu, L., Lin, H., & Li, J. (2014). Geographic routing protocol for vehicular ad hoc networks in city scenarios: A proposal and analysis. International Journal of Communication Systems, 27(12), 4126–4143.Google Scholar
  4. 4.
    Sermpezis, P., Koltsidas, G., & Pavlidou, F.-N. (2013). Investigating a junction-based multipath source routing algorithm for VANETs. IEEE Communications Letters, 17(3), 600–603.Google Scholar
  5. 5.
    Chang, J.-J., Li, Y.-H., Liao, W., & Chang, C. (2012). Intersection-based routing for urban vehicular communications with traffic-light considerations. IEEE Wireless Communications, 19(1), 82–88.Google Scholar
  6. 6.
    Wang, M., Zhang, Y., Li, C., Wang, X., & Zhu, L. (2014). A survey on intersection-based routing protocols in city scenario of VANETs. In 2014 International conference on connected vehicles and expo (ICCVE) (pp. 821–826). IEEE.Google Scholar
  7. 7.
    Darwish, T., & Bakar, K. A. (2016). Traffic aware routing in vehicular ad hoc networks: Characteristics and challenges. Telecommunication Systems, 61(3), 489–513.Google Scholar
  8. 8.
    Liu, G., Lee, B.-S., Seet, B.-C., Foh, C.-H., Wong, K.-J., & Lee, K.-K. (2004). A routing strategy for metropolis vehicular communications. In International conference on information networking (pp. 134–143). Springer.Google Scholar
  9. 9.
    Saiáns-Vázquez, J. V., López-Nores, M., Blanco-Fernández, Y., Ordóñez-Morales, E. F., Bravo-Torres, J. F., & Pazos-Arias, J. J. (2017). Efficient and viable intersection-based routing in VANETs on top of a virtualization layer. Annals of Telecommunications, 73(5–6), 317–328.Google Scholar
  10. 10.
    Bernsen, J., & Manivannan, D. (2012). RIVER: A reliable inter-vehicular routing protocol for vehicular ad hoc networks. Computer Networks, 56(17), 3795–3807.Google Scholar
  11. 11.
    Acarman, T., Yaman, Ç., Peksen, Y., & Peker, A. U. (2015). Intersection based routing in urban VANETs. In 2015 IEEE 18th international conference on intelligent transportation systems (ITSC) (pp. 1087–1092). IEEE.Google Scholar
  12. 12.
    Sahu, P. K., Wu, E. H.-K., Sahoo, J., & Gerla, M. (2013). BAHG: Back-bone-assisted hop greedy routing for VANET’s city environments. IEEE Transactions on Intelligent Transportation Systems, 14(1), 199–213.Google Scholar
  13. 13.
    Abbasi, I. A., Nazir, B., Abbasi, A., Bilal, S. M., & Madani, S. A. (2014). A traffic flow-oriented routing protocol for VANETs. EURASIP Journal on Wireless Communications and Networking, 2014(1), 121.Google Scholar
  14. 14.
    Jerbi, M., Senouci, S.-M., Rasheed, T., & Ghamri-Doudane, Y. (2009). Towards efficient geographic routing in urban vehicular networks. IEEE Transactions on Vehicular Technology, 58(9), 5048–5059.Google Scholar
  15. 15.
    Ding, Y., Wang, C., & Xiao, L. (2007). A static-node assisted adaptive routing protocol in vehicular networks. In Proceedings of the fourth ACM international workshop on Vehicular ad hoc networks (pp. 59–68). ACM.Google Scholar
  16. 16.
    Ma, C., & Liu, N. (2013). Traffic-aware data delivery scheme for urban vehicular sensor networks. International Journal of Distributed Sensor Networks. Scholar
  17. 17.
    Guan, X., Huang, Y., Cai, Z., & Ohtsuki, T. (2016). Intersection-based forwarding protocol for vehicular ad hoc networks. Telecommunication Systems, 62(1), 67–76.Google Scholar
  18. 18.
    Chuang, P.-J., & Liu, M.-C. (2016). Enhancing junction-based routing for vehicular ad hoc networks by effective routing table learning and maintenance. International Journal of Future Generation Communication and Networking, 9(1), 135–148.Google Scholar
  19. 19.
    Tsiachris, S., Koltsidas, G., & Pavlidou, F.-N. (2013). Junction-based geographic routing algorithm for vehicular ad hoc networks. Wireless Personal Communications, 71(3), 955–973. Scholar
  20. 20.
    Dhurandher, S. K., Obaidat, M. S., Bhardwaj, D., & Garg, A. (2012). GROOV: A geographic routing over VANETs and its performance evaluation. In Global communications conference (GLOBECOM), 2012 IEEE (pp. 1670–1675). IEEE.Google Scholar
  21. 21.
    Lochert, C., Mauve, M., Füßler, H., & Hartenstein, H. (2005). Geographic routing in city scenarios. ACM SIGMOBILE Mobile Computing and Communications Review, 9(1), 69–72.Google Scholar
  22. 22.
    Zhao, J., & Cao, G. (2008). VADD: Vehicle-assisted data delivery in vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 57(3), 1910–1922.Google Scholar
  23. 23.
    Chen, Y.-S., Lin, Y.-W., & Pan, C.-Y. (2011). DIR: Diagonal-intersection-based routing protocol for vehicular ad hoc networks. Telecommunication Systems, 46(4), 299–316.Google Scholar
  24. 24.
    Tian, J., Han, L., & Rothermel, K. (2003). Spatially aware packet routing for mobile ad hoc inter-vehicle radio networks. In Intelligent Transportation Systems, 2003. Proceedings. 2003 IEEE (pp. 1546–1551). IEEE.Google Scholar
  25. 25.
    Lochert, C., Hartenstein, H., Tian, J., Fussler, H., Hermann, D., & Mauve, M. (2003). A routing strategy for vehicular ad hoc networks in city environments. In Intelligent vehicles symposium, 2003. Proceedings. IEEE (pp. 156–161). IEEE.Google Scholar
  26. 26.
    Bhoi, S. K., & Khilar, P. M. (2014). IJS: An intelligent junction selection based routing protocol for VANET to support ITS services. International Scholarly Research Notices, 2014.Google Scholar
  27. 27.
    Tripp-Barba, C., Urquiza-Aguiar, L., Igartua, M. A., Rebollo-Monedero, D., de la Cruz Llopis, L. J., Mezher, A. M., et al. (2014). A multimetric, map-aware routing protocol for VANETs in urban areas. Sensors, 14(2), 2199–2224.Google Scholar
  28. 28.
    Gafoor, Z. (2011). An efficient geographical routing and adaptive beaconing in vehicular ad hoc networks. Ph.D. Research Thesis, Deparment of Computing, Universiti Teknologi Malaysia, Skudai.Google Scholar
  29. 29.
    Alsharif, N., Céspedes, S., & Shen, X. (2013). iCAR: Intersection-based connectivity aware routing in vehicular ad hoc networks. In 2013 IEEE international conference on communications (ICC) (pp. 1736–1741). IEEE.Google Scholar
  30. 30.
    Jalooli, A., Song, M., & Xu, X. (2017). Delay efficient disconnected RSU placement algorithm for VANET safety applications. In Wireless communications and networking conference (WCNC), 2017 IEEE (pp. 1–6). IEEE.Google Scholar
  31. 31.
    Xue, L., Yang, Y., & Dong, D. (2017). Roadside infrastructure planning scheme for the urban vehicular networks. Transportation Research Procedia, 25, 1380–1396.Google Scholar
  32. 32.
    Lin, C.-F., Juang, J.-C., Liang, E., & Ke, L.-Y. (2011). Application of DSRC/WAVE for more efficient streetlamp control. In 2011 proceedings of SICE annual conference (SICE) (pp. 1381–13830). IEEE.Google Scholar
  33. 33.
    Gerla, M., & Kleinrock, L. (2011). Vehicular networks and the future of the mobile internet. Computer Networks, 55(2), 457–469.Google Scholar
  34. 34.
    Al-Mayouf, Y. R. B., Ismail, M., Abdullah, N. F., Wahab, A. W. A., Mahdi, O. A., Khan, S., et al. (2016). Efficient and stable routing algorithm based on user mobility and node density in urban vehicular network. PLoS ONE, 11(11), e0165966.Google Scholar
  35. 35.
    Krajzewicz, D., Erdmann, J., Behrisch, M., & Bieker, L. (2012). Recent development and applications of SUMO-Simulation of Urban MObility. International Journal on Advances in Systems and Measurements, 5(3&4), 128–138.Google Scholar
  36. 36.
    Haklay, M., & Weber, P. (2008). Openstreetmap: User-generated street maps. IEEE Pervasive Computing, 7(4), 12–18.Google Scholar
  37. 37.
    Network Simulator 3.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Information and Communication EngineeringBasrah University College of Science and TechnologyBasrahIraq
  2. 2.School of Computing, Faculty of EngineeringUniversiti Teknologi MalaysiaSkudaiMalaysia

Personalised recommendations