Advertisement

Telecommunication Systems

, Volume 72, Issue 2, pp 221–229 | Cite as

Integration of millimeter-wave and optical link for duplex transmission of hierarchically modulated signal over a single carrier and fiber for future 5G communication systems

  • Afnan Riaz
  • Salman GhafoorEmail author
  • Rizwan Ahmad
Article
  • 114 Downloads

Abstract

Integration of optical and millimeter-wave systems provide a promising solution for future giga-bits per second wireless communication systems. We have proposed and simulated full-duplex transmission of a hierarchically modulated signal carrying data for two different users at a combined rate of 1.5 Gbps. Analogue modulation of the optical carrier is used for the transmission of downlink data while the same carrier is re-used by digitally modulating it with the uplink data. The use of optical analogue and digital modulation schemes allow the transmission of duplex data over a single optical fiber. A millimeter-wave channel \(\hbox {NYUSIM}\_{\mathrm{v1}}\_4\) is integrated with the optical link. The performance of the downlink and uplink signals are evaluated in terms of error vector magnitude and bit-error rate measurements, respectively. The effect of fiber length, received optical power and data rates on the performance has also been evaluated. It is shown that for a fiber length of 10 km, the lowest error vector magnitude obtained for the hierarchically modulated signal after transmission through a 14 m millimeter-wave link is 9.5%.

Keywords

5G communication Millimeter-waves Hierarchical modulation Carrier re-use 

Notes

References

  1. 1.
    Thomas, V. A., El-Hajjar, M., & Hanzo, L. (2016). Millimeter-wave radio over fiber optical upconversion techniques relying on link nonlinearity. IEEE Communications Surveys & Tutorials, 18, 29–53.CrossRefGoogle Scholar
  2. 2.
    Beas, J., Castanon, G., Aldaya, I., Aragn-Zavala, A., & Campuzano, G. (2013). Millimeter-wave frequency radio over fiber systems: A survey. IEEE Communications Surveys & Tutorials, 15, 1593–1619.CrossRefGoogle Scholar
  3. 3.
    Fang, Y., Jianjun, Y., Chi, N., & Xiao, J. (2014). Full-duplex bidirectional transmission of 10-Gb/s millimeter-wave QPSK signal in E-band optical wireless link. Optics Express, 22, 1229–1234.CrossRefGoogle Scholar
  4. 4.
    Xu, W., Gao, X., Zhao, M., Xie, M., & Huang, S. (2018). Full duplex radio over fiber system with frequency quadrupled millimeter-wave signal generation based on polarization multiplexing. Optics & Laser Technology, 103, 267–271.CrossRefGoogle Scholar
  5. 5.
    Zhang, R., & Ma, J. (2017). Full-duplex link with a unified optical OFDM signal for wired and millimeter-wave wireless accesses based on direct detection. Optical Switching and Networking, 25, 33–39.CrossRefGoogle Scholar
  6. 6.
    Paresys, F., Shao, T., Maury, G., Le Guennec, Y., & Cabon, B. (2013). Bidirectional millimeter-wave radio-over-fiber system based on photodiode mixing and optical heterodyning. IEEE/OSA Journal of Optical Communications and Networking, 5, 74–80.CrossRefGoogle Scholar
  7. 7.
    Tang, C., Jianjun, Y., Li, X., Chi, N., Xiao, J., Tian, Y., et al. (2014). 30 Gb/s full-duplex bi-directional transmission optical wireless-over fiber integration system at W-band. Optics Express, 22, 239–245.CrossRefGoogle Scholar
  8. 8.
    Xu, Y., Zhang, Z., Li, X., Xiao, J., & Jianjun, Y. (2014). Demonstration of 60 Gb/s W-band optical mm-wave signal full-duplex transmission over fiber-wireless-fiber network. IEEE Communications Letters, 18, 2105–2108.CrossRefGoogle Scholar
  9. 9.
    He, J., Wen, X., Chen, M., Chen, L., & Jinshu, S. (2015). Full-duplex multiband orthogonal frequency division multiplexing ultra-wideband over fiber system. Optical Engineering, 54, 016101.CrossRefGoogle Scholar
  10. 10.
    Browning, C., Martin, E. P., Farhang, A., & Barry, L. P. (2017). 0 GHz 5G radio-over-fiber using UF-OFDM with optical heterodyning. IEEE Photonics Technology Letters, 29, 2059–2062.CrossRefGoogle Scholar
  11. 11.
    Shao, T., Beltrn, M., Zhou, R., Anandarajah, P. M., Llorente, R., & Barry, L. P. (2014). 60 GHz radio over fiber system based on gain-switched laser. Journal of Lightwave Technology, 32, 3695–3703.CrossRefGoogle Scholar
  12. 12.
    NGMN Alliance. (2015). NGMN 5G White Paper.Google Scholar
  13. 13.
    Ericsson. (2018). The 5G consumer business case.Google Scholar
  14. 14.
    Vagionas, C., Papaioannou, S., Argyris, N., Kanta, K., Iliadis, N., Giannoulis, G., & Apostolopoulos, D. et al. (2018). A 6-band 12Gb/s IFoF/V-band fiber-wireless fronthaul link using an InP externally modulated laser. In 2018 European conference on optical communication (ECOC) (pp. 1–3). IEEE.Google Scholar
  15. 15.
    Vagionas, C., Papaioannou, S., Kalfas, G., Pleros, N., Argyris, N., Kanta, K., Iliadis, N., Giannoulis, G., Apostolopoulos, D., & Avramopoulos, H. (2018). A six-channel mmWave/IFoF link with 24Gb/s capacity for 5G fronthaul networks. In 2018 international topical meeting on microwave photonics (MWP) (pp. 1–4). IEEE.Google Scholar
  16. 16.
    Habib, U., Steeg, M., Sthr, A., & Gomes, N. J. (2018). Radio-over-fiber-supported millimeter-wave multiuser transmission with low-complexity antenna units. In 2018 international topical meeting on microwave photonics (MWP) (pp. 1–4). IEEE.Google Scholar
  17. 17.
    Cho, H. J., Cho, H., Mu, X., Lu, F., Shen, S., Ma, X., & Chang, G.-K. (2018). Asynchronous transmission using universal filtered multicarrier for multiservice applications in 5G fiber-wireless integrated mobile fronthaul. In 2018 optical fiber communications conference and exposition (OFC) (pp. 1–3). IEEE.Google Scholar
  18. 18.
    Gliese, U., Nielsen, S. N., & Nielsen, T. N. (1996). Limitations in distance and frequency due to chromatic dispersion in fibre-optic microwave and millimeter-wave links. In IEEE MTT-S international microwave symposium digest, 1996 (Vol. 3, pp. 1547–1550). IEEE.Google Scholar
  19. 19.
    Sung, M., Cho, S.-H., Kim, J., Lee, J. K., Lee, J. H., & Chung, H. S. (2018). Demonstration of IFOF-based mobile fronthaul in 5G prototype with 28-GHz millimeter wave. Journal of Lightwave Technology, 36, 601–609.CrossRefGoogle Scholar
  20. 20.
    Lallas, E. N. (2019). A survey on all optical label swapping techniques: Comparison and trends. Optical Switching and Networking, 31, 22–38.CrossRefGoogle Scholar
  21. 21.
    Su, S. F., Bugos, A. R., Lanzisera, V., & Olshansky, R. (1994). Demonstration of a multiple-access WDM network with subcarrier-multiplexed control channels. IEEE Photonics Technology Letters, 6, 461–463.CrossRefGoogle Scholar
  22. 22.
    Zhu, Z., Hernandez, V. J., Jeon, M. Y., Cao, J., Pan, Z., & Yoo, S. J. (2003). RF photonics signal processing in subcarrier multiplexed optical-label switching communication systems. Journal of Lightwave Technology, 21, 3155–3166.CrossRefGoogle Scholar
  23. 23.
    Chi, N., Lin, X., Zhang, J., Holm-Nielsen, P. V., Peucheret, C., Siyuan, Y., et al. (2006). Improve the performance of orthogonal ASK/DPSK optical label switching by DC-balanced line encoding. Journal of Lightwave Technology, 24, 1082.CrossRefGoogle Scholar
  24. 24.
    Su, F., Jin, H., & Jin, F. (2011). An overview of optical label switching technology. Physics Procedia, 22, 392–396.CrossRefGoogle Scholar
  25. 25.
    Sun, H., Dong, C., Ng, S. X., & Hanzo, L. (2015). Five decades of hierarchical modulation and its benefits in relay-aided networking. IEEE Access, 3, 2891–2921.CrossRefGoogle Scholar
  26. 26.
    Sun, H., Ng, S. X., & Hanzo, L. (2015). Turbo trellis-coded hierarchical-modulation assisted decode-and-forward cooperation. IEEE Transactions on Vehicular Technology, 64, 3971–3981.CrossRefGoogle Scholar
  27. 27.
    Cao, P., Hu, X., Zhuang, Z., Zhang, L., Chang, Q., Yang, Q., et al. (2013). Power margin improvement for OFDMA-PON using hierarchical modulation. Optics Express, 21, 8261–8268.CrossRefGoogle Scholar
  28. 28.
    Zhang, L., Cao, P., Hu, X., Liu, C., Zhu, M., Yi, A., et al. (2013). Enhanced multicast performance for a 60-GHz gigabit wireless service over optical access network based on 16-QAM–OFDM hierarchical modulation. In 2013 optical fiber communication conference and exposition and the national fiber optic engineers conference (OFC/NFOEC) (pp. 1–3). IEEE.Google Scholar
  29. 29.
    Tian, Y., Lee, K. L., Lim, C., & Nirmalathas, A. (2018). Demonstration of non-orthogonal multiple access scheme using multilevel coding without successive interference cancellation with 60 GHz radio-over-fiber fronthaul. In Optical fiber communication conference, Tu3J-4. Optical Society of America.Google Scholar
  30. 30.
    Ghafoor, S., & Hanzo, L. (2011). Reduced dispersion duplex DQPSK radio-over-fiber communications using single-laser-based multiple side-bands. In Proceedings of IEEE international conference on communications (pp. 1–5).Google Scholar
  31. 31.
    Samimi, M. K., & Rappaport, T. S. (2016). 3-D millimeter-wave statistical channel model for 5G wireless system design. IEEE Transactions on Microwave Theory and Techniques, 64, 2207–2225.CrossRefGoogle Scholar
  32. 32.
    Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work!. IEEE Access, 1, 335–349.CrossRefGoogle Scholar
  33. 33.
    Ptzold, M. (2017). Fifth-generation technology offers trillion-dollar business opportunities [mobile radio]. IEEE Vehicular Technology Magazine, 12, 4–11.Google Scholar
  34. 34.
    National Instruments. (March 21, 2017). NI demonstrates worlds first real-time over-the-air prototype for verizon 5G at 28 GHz. http://www.ni.com/newsroom/release/ni-demonstrates-worlds-first-real-time-over-the-air-prototype-for-verizon-5g-at-28-ghz/en/. Accessed 3 Sept 2018.
  35. 35.
    Wiberg, A., Perez-Millen, P., Andres, M. V., Andrekson, P. A., & Hedekvist, P. O. (2005). Fiber-optic 40-GHz mm-wave link with 2.5-Gb/s data transmission. IEEE Photonics Technology Letters, 17, 1938–1940.CrossRefGoogle Scholar
  36. 36.
    Jacobsson, F. (2004). DPSK modulation format for optical communication using FBG demodulator. M.Sc thesis, Institutionen for teknik och naturvetenskap.Google Scholar
  37. 37.
    Wang, J., & Kahn, J. M. (2004). Conventional DPSK versus symmetrical DPSK: Comparison of dispersion tolerances. IEEE Photonics Technology Letters, 16, 1585–1587.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Electrical Engineering and Computer ScienceNational University of Sciences and TechnologyIslamabadPakistan

Personalised recommendations