Advertisement

Telecommunication Systems

, Volume 70, Issue 2, pp 309–320 | Cite as

Iterative multiuser detector-decoding for nonbinary LDPC coded multicarrier MFSK systems

  • Her-Chang TsaiEmail author
Article
  • 12 Downloads

Abstract

This paper investigates an iterative multiuser detection for nonbinary low density parity check (LDPC) coded multicarrier multiple level frequency shift keying system to increase system performance under specific signal-to-noise ratio and data rate. We propose three-level hard-limited detection probabilities over both additive white Gaussian noise (AWGN) channels and Rayleigh fading channels. During multiuser detection (MUD) process, the hard-limited detection probabilities are computed in advanced and stored in tables. By using table looking up, the MUD soft outputs can be computed efficiently. We test the reliability of soft outputs from nonbinary LDPC channel decoder for all users. If the soft output exceeds a reliability threshold, the user is declared as a reliable user. For each symbol, we count the number of reliable users on it, and, use this information to update the soft output of MUD during the iterative multiuser detection and decoding process, which cancel multiple access interference iteratively. Numerical results show that the performances of three-level hard-limited systems outperform two-level hard-limited systems over AWGN channels and Rayleigh fading channels.

Keywords

Multicarrier MFSK MAI IMUD Nonbinary LDPC codes FFT-QSPA 

References

  1. 1.
    Goodman, D. J., Henry, P. S., & Prabhu, V. K. (1980). Frequency-hopped multilevel FSK for mobile radio. Bell System Technical Journal, 59(7), 1257–1275.CrossRefGoogle Scholar
  2. 2.
    Einarsson, G. (1980). Address assignment for a time- Frequency-coded spread-spectrum system. Bell System Technical Journal, 59(7), 1241–1255.CrossRefGoogle Scholar
  3. 3.
    Timor, U. (1981). Multistage decoding of frequency-hopped FSK system. Bell System Technical Journal, 60(4), 471–483.CrossRefGoogle Scholar
  4. 4.
    Mabuchi, T., Kohno, R., & Imai, H. (1994). Multiuser detection scheme based on cancelling cochannel interference for MFSK/FH-SSMA system. IEEE Journal on Selected Areas in Communications, 12(4), 593–604.CrossRefGoogle Scholar
  5. 5.
    Fiebig, U. (1996). An algorithm for joint detection in fast frequency systems. IEICE Transactions on Fundamentals, Special Section on Spread Spectrum Techniques and Applications, E79-A(12), 2010–2017.Google Scholar
  6. 6.
    Fiebig, U. (1996). Iterative interference cancellation for FFH/MFSK systems. IEE Proceedings Communications, 143(6), 380–388.CrossRefGoogle Scholar
  7. 7.
    Halford, K. W., & Brandt-Pearce, M. (2000). Multi-stage multi-user detection for FHMA. IEEE Transactions on Communications, 48(9), 1550–1562.CrossRefGoogle Scholar
  8. 8.
    Fiebig, U. C., & Robertson, P. (1999). Soft-decision and erasure decoding in fast frequency-hopping systems with convolutional, turbo, and Reed-Solomon codes’. IEEE Transactions on Communications, 47(11), 1646–1654.CrossRefGoogle Scholar
  9. 9.
    Hong, S., Seol, C. U., & Cheun, K. (2011). Performance of soft decision decoded synchronous FHSS multiple access networks using MFSK modulation under Rayleigh fading. IEEE Transactions on Communications, 59(4), 1066–1077.CrossRefGoogle Scholar
  10. 10.
    Hung, C. P., & Su, Y. T. (1995). Diversity combining considerations for incoherent frequency hopping multiple access systems. IEEE Journal on Selected Areas in Communications, 13, 333–344.CrossRefGoogle Scholar
  11. 11.
    Sinha, R., & Yates, R. D. An OFDM based multicarrier MFSK system. In Proceedings of the IEEE-VTS Fall VTC 2000 (Vol. 1, pp. 257–264).Google Scholar
  12. 12.
    Sinha, R., & Yates, R. D. Performance of multicarrier MFSK in fading channels. In Proceedings of the IEEE-VTS Fall VTC 2000 (Vol. 3, pp. 1848–1851).Google Scholar
  13. 13.
    Sinha, R., Yener, A., & Yates, R. D. (2002). Noncoherent multiuser communications: Multistage detection and selective filtering. EURASIP Journal on Applied Signal Processing, 2002(12), 1415–1426.Google Scholar
  14. 14.
    Yu, Z., Tjhung, T. T., & Chai, C. C. (2004). Multiuser detection algorithm based on iterative interference cancellation for MC-MFSK systems. In IEEE PIMRC (pp. 2915–2999).Google Scholar
  15. 15.
    Yu, Z., Tjhung, T. T., & Chai, C. C. (2004). Performance of MC-MFSK systems with IIC-based multiuser detection over Rayleigh fading channels. In IEEE Globecom (pp. 893–897).Google Scholar
  16. 16.
    Yu, Z., Tjhung, T. T., & Chai, C. C. (2005). Performance of multiple access multicarrier MFSK system over Rician fading channels. IEEE Transactions on Vehicular Technology, 54(3), 1091–1102.CrossRefGoogle Scholar
  17. 17.
    Nguye, T. T., Nguyen, H. H., & Le-Ngoc, T. (2014). Iterative interference cancellation in multiuser relaying with fast frequency-hopping modulation. IET Communications, 8(15), 2693–2705.CrossRefGoogle Scholar
  18. 18.
    Caire, G., Taricco, G., & Biglien, E. (1998). Bit-interleaved coded modulation. IEEE Transactions on Information Theory, 44(3), 927–946.CrossRefGoogle Scholar
  19. 19.
    Gallager, G. (1962). Low-density parity-check codes. IEEE Transactions on Information Theory, IT-8, 21–28.CrossRefGoogle Scholar
  20. 20.
    MacKay, D. J. C., & Neal, R. M. (1996). Near Shannon limit performance of low-density parity-check codes. Electronics Letters, 32, 1645–1646.CrossRefGoogle Scholar
  21. 21.
    Davey, M. C., & Mackey, D. (1998). Low density parity check code over GF(q). IEEE Communications Letters, 2(6), 165–167.CrossRefGoogle Scholar
  22. 22.
    Chung, S. Y., Forney, G. D., Richardson, T., & Urbanke, R. (2001). On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit. IEEE Communications Letters, 5, 58–60.CrossRefGoogle Scholar
  23. 23.
    Declercq, David, & Fossorier, Marc. (2007). Decoding algorithms for nonbinary LDPC codes over GF(q). IEEE Transactions on Communications, 55(4), 633–643.CrossRefGoogle Scholar
  24. 24.
    Durgin, G. D., Rappaport, T. S., & de Wolf, D. A. (2002). New analytical models and probability density functions for fading in wireless communications. IEEE Transactions on Communications, 50(6), 1005–1015.CrossRefGoogle Scholar
  25. 25.
    Abdi, A., Hashemi, H., & Nader-Esfahani, S. (2000). On the PDF of the sum of random vectors. IEEE Transactions on Communications, 48(1), 7–12.CrossRefGoogle Scholar
  26. 26.
    Bird, J. S., & George, D. A. (1981). The use of the Fourier-Bessel series in calculating error probabilities for digital communications systems. IEEE Transactions on Communications, COM-29, 1357–1365.CrossRefGoogle Scholar
  27. 27.
    Gradshteyn, I. S., & Ryzhik, I. M. (1980). Table of integrals, series, and products. New York: Academic.Google Scholar
  28. 28.
    Hu, X.-Y., Eleftheriou, E., & Amold, D. M. (2005). Regular and irregular progress edge-growth tanner graphs. IEEE Transactions on Information Theory, 51(1), 386–398.CrossRefGoogle Scholar
  29. 29.
    Choi, K., & Cheun, K. (2006). Optimum parameters for maximum throughput of FHMA system with multilevel FSK. IEEE Transactions on Vehicular Technology, 55(5), 1485–1492.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Computer and Communication, National Cheng-Kung UniversityTainanTaiwan

Personalised recommendations