Advertisement

Underwater optical wireless sensor networks using resource allocation

  • Jie LianEmail author
  • Yan Gao
  • Huihui Wang
Article
  • 40 Downloads

Abstract

Optical wireless communications is an energy efficient and cost-effective solution for high speed and high secure wireless connections. In this paper, we propose an underwater optical wireless sensor network using multiple input multiple output technique and power allocation algorithm for supporting multiple users with the impacts of underwater channel uncertainty interferences. In proposed power allocation algorithm, all the LED nodes in are coordinated and controlled by a central controller; each LED node supports all the users within its field of view. To separate users, optical code division multiple access is used; cyclic optical orthogonal code working as CDMA code is employed. At the receiver, a minimal mean squared error (MMSE) filter is uniquely designed for each user. The MMSE filters and the assigned power can be jointly optimized to improve the overall throughput and signal to noise ratio. Since the system performance may be impacted by the underwater channel uncertainty, the proposed power allocation can use the predicted channel uncertainty variance to reduce the interference of the channel uncertainty and improve the signal to noise ratio. Compared to the equal power allocation algorithm, the proposed algorithm can support longer transmission distance, higher bit rate and lower bit error rate.

Keywords

Optical wireless communications Underwater communications Wireless sensor networks MIMO system CDMA Resource allocation Multiple access interference Channel uncertainty 

Notes

References

  1. 1.
    Chen, K., Ma, M., Cheng, E., Yuan, F., & Su, W. (2014). A survey on mac protocols for underwater wireless sensor networks. IEEE Communications Surveys Tutorials, 16(3), 1433–1447.CrossRefGoogle Scholar
  2. 2.
    Sifferlen, J. F., Song, H. C., Hodgkiss, W. S., Kuperman, W. A., & Stevenson, J. M. (2008). An iterative equalization and decoding approach for underwater acoustic communication. IEEE Journal of Oceanic Engineering, 33(2), 182–197.CrossRefGoogle Scholar
  3. 3.
    Gulbahar, B., & Akan, O. B. (2012). A communication theoretical modeling and analysis of underwater magneto-inductive wireless channels. IEEE Transactions on Wireless Communications, 11(9), 3326–3334.CrossRefGoogle Scholar
  4. 4.
    Sandeep, D. N., & Kumar, V. (2017). Review on clustering, coverage and connectivity in underwater wireless sensor networks: A communication techniques perspective. IEEE Access, 5, 11176–11199.CrossRefGoogle Scholar
  5. 5.
    Kaushal, H., & Kaddoum, G. (2016). Underwater optical wireless communication. IEEE Access, 4, 1518–1547.CrossRefGoogle Scholar
  6. 6.
    Lu, H., Li, C., Lin, H., Tsai, W., Chu, C., Chen, B., et al. (2016). An 8 m/9.6 Gbps underwater wireless optical communication system. IEEE Photonics Journal, 8(5), 1–7.CrossRefGoogle Scholar
  7. 7.
    Mao, Q., Yue, P., Xu, M., Ji, Y., & Cui, Z. (2017). Octmac: A vlc based mac protocol combining optical cdma with tdma for vanets. In 2017 International Conference on Computer, Information and Telecommunication Systems (CITS) (pp. 234–238).Google Scholar
  8. 8.
    Aparicio, J., & Shimura, T. (2017). Ofdma communication system for cooperative localization of underwater vehicles. In 2017 IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) (pp. 1–5).Google Scholar
  9. 9.
    Zhang, Y., Huang, Y., Wan, L., Zhou, S., Shen, X., & Wang, H. (2016). Adaptive ofdma with partial csi for downlink underwater acoustic communications. Journal of Communications and Networks, 18(3), 387–396.CrossRefGoogle Scholar
  10. 10.
    Ma, L., Zhou, S., Qiao, G., Liu, S., & Zhou, F. (2017). Superposition coding for downlink underwater acoustic ofdm. IEEE Journal of Oceanic Engineering, 42(1), 175–187.Google Scholar
  11. 11.
    Lin, B., Tang, X., Ghassemlooy, Z., Lin, C., & Li, Y. (2017). Experimental demonstration of an indoor vlc positioning system based on ofdma. IEEE Photonics Journal, 9(2), 1–9.Google Scholar
  12. 12.
    Dong, R., Ouzzif, M., & Saoudi, S. (2012). Opportunistic random-access scheme design for ofdma-based indoor plc networks. IEEE Transactions on Power Delivery, 27(4), 2073–2081.CrossRefGoogle Scholar
  13. 13.
    Jamali, M. V., Akhoundi, F., & Salehi, J. A. (2016). Performance characterization of relay-assisted wireless optical cdma networks in turbulent underwater channel. IEEE Transactions on Wireless Communications, 15(6), 4104–4116.CrossRefGoogle Scholar
  14. 14.
    Akhoundi, F., Jamali, M. V., Hassan, N. B., Beyranvand, H., Minoofar, A., & Salehi, J. A. (2016). Cellular underwater wireless optical CDMA network: Potentials and challenges. IEEE Access, 4, 4254–4268.CrossRefGoogle Scholar
  15. 15.
    BaniHassan, N., Akhoundi, F., & Salehi, J. A. (2015). Adaptive power control algorithms in underwater wireless optical cdma cellular networks. In 2015 4th International Workshop on Optical Wireless Communications (IWOW) (pp. 107–111).Google Scholar
  16. 16.
    Amantayeva, A., Yerzhanova, M., & Kizilirmak, R. C. (2018). Multiuser MIMO for underwater visible light communication. In 2018 International Conference on Computing and Network Communications (CoCoNet) (pp. 164–168).Google Scholar
  17. 17.
    Wu, L., Zhang, Z., & Liu, H. (2012). Modulation scheme based on precoder matrix for mimo optical wireless communication systems. IEEE Communications Letters, 16(9), 1516–1519.CrossRefGoogle Scholar
  18. 18.
    Malik, M. H., Jamil, M., Khan, M. N., & Malik, M. H. (2016). Formal modelling of TCP congestion control mechanisms ECN/RED and SAP-LAW in the presence of UDP traffic. EURASIP Journal on Wireless Communications and Networking, 2016(1), 156.CrossRefGoogle Scholar
  19. 19.
    Khan, M. N., Gilani, S. O., Jamil, M., Rafay, A., Awais, Q., Khawaja, B. A., et al. (2018). Maximizing throughput of hybrid FSO-RF communication system: An algorithm. IEEE Access, 6, 30039–30048.CrossRefGoogle Scholar
  20. 20.
    Hassan, H., Khan, M. N., Gilani, S. O., Jamil, M., Maqbool, H., Malik, A. W., et al. (2018). H.264 encoder parameter optimization for encoded wireless multimedia transmissions. IEEE Access, 6, 22046–22053.CrossRefGoogle Scholar
  21. 21.
    Gabriel, C., Khalighi, M., Bourennane, S., Leon, P., & Rigaud, V. (2011). Channel modeling for underwater optical communication. In 2011 IEEE GLOBECOM Workshops (GC Wkshps) (pp. 833–837).Google Scholar
  22. 22.
    Zeng, Z., Fu, S., Zhang, H., Dong, Y., & Cheng, J. (2017). A survey of underwater optical wireless communications. IEEE Communications Surveys Tutorials, 19(1), 204–238.CrossRefGoogle Scholar
  23. 23.
    Kim, B.-H., Zhang, X., & Flury, M. (2006). Linear MMSE space-time equalizer for MIMO multicode CDMA systems. IEEE Transactions on Communications, 54(10), 1710–1714.CrossRefGoogle Scholar
  24. 24.
    Liang, Y., Pan, G., & Bai, Z. D. (2007). Asymptotic performance of MMSE receivers for large systems using random matrix theory. IEEE Transactions on Information Theory, 53(11), 4173–4190.CrossRefGoogle Scholar
  25. 25.
    Wrulich, M., Mehlfuhrer, C., & Rupp, M. (2010). Managing the interference structure of MIMO HSDPA: A multi-user interference aware MMSE receiver with moderate complexity. IEEE Transactions on Wireless Communications, 9(4), 1472–1482.CrossRefGoogle Scholar
  26. 26.
    Ghassemlooy, Z., Popoola, W., & Rajbhandari, S. (2013). Optical wireless communications: System and channel modeling with MATLAB. Boca Raton: CRC Press.Google Scholar
  27. 27.
    Attaviriyanupap, P., Kita, H., Tanaka, E., & Hasegawa, J. (2002). A hybrid EP and SQP for dynamic economic dispatch with nonsmooth fuel cost function. IEEE Transactions on Power Systems, 17(2), 411–416.CrossRefGoogle Scholar
  28. 28.
    Grudinin, N. (1998). Reactive power optimization using successive quadratic programming method. IEEE Transactions on Power Systems, 13(4), 1219–1225.CrossRefGoogle Scholar
  29. 29.
    Wang, C., Yu, H. Y., & Zhu, Y. J. (2016). A long distance underwater visible light communication system with single photon avalanche diode. IEEE Photonics Journal, 8(5), 1–11.Google Scholar
  30. 30.
    Hong, Y., Chen, J., Wang, Z., & Yu, C. (2013). Performance of a precoding MIMO system for decentralized multiuser indoor visible light communications. IEEE Photonics Journal, 5(4), 7800211–7800211.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Charles L. Brown Department of Electrical and Computer EngineeringUniversity of VirginiaCharlottesvilleUSA
  2. 2.School of Information EngineeringXi’an UniversityXi’anChina
  3. 3.Jacksonville UniversityJacksonvilleUSA

Personalised recommendations