Telecommunication Systems

, Volume 71, Issue 2, pp 303–308 | Cite as

On the fundamental limit to the use of cognitive radio in underwater acoustic sensor networks

  • K. M. MridulaEmail author
  • P. M. Ameer
Letter to the Editor


Cognitive communication is an effective solution to the spectrum scarcity issues in wireless networks. The underwater sensor networks are prone to large propagation delays which result in the fundamental limitation on introducing cognitive aspects in underwater scenario. This letter explores the fundamental limitation of using cognitive communication in large propagation delay underwater networks. This work proposes a method to find the optimal position of the secondary user, to minimize the interference to primary users, in an underwater cognitive acoustic network. The proposed method also considers the effect of channel randomness which is modeled using the log-normal shadowing model. The method can also be used to select and schedule the secondary user transmissions, from a set of secondary users, such that the interruption time to the primary users is minimized.


Underwater cognitive acoustic networks Secondary user placement Large propagation delay Multiple primary user scenario Log-normal shadowing 


Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. 1.
    Akyildiz, I. F., Pompili, D., & Melodia, T. (2005). Underwater acoustic sensor networks: Research challenges. Ad Hoc Networks, 3(3), 257–279.CrossRefGoogle Scholar
  2. 2.
    Bicen, A. O., Sahin, A. B., & Akan, O. B. (2012). Spectrum-aware underwater networks: Cognitive acoustic communications. IEEE Vehicular Technology Magazine, 7(2), 34–40.CrossRefGoogle Scholar
  3. 3.
    Luo, Y., Pu, L., Zuba, M., Peng, Z., & Cui, J. H. (2014). Challenges and opportunities of underwater cognitive acoustic networks. IEEE Transactions on Emerging Topics in Computing, 2(2), 198–211.CrossRefGoogle Scholar
  4. 4.
    Jin, L., Huang, D. D., Zou, L., & Zhang, A. Y. J. (2012). Cognitive acoustics: A way to extend the lifetime of underwater acoustic sensor networks. Cognitive Communications: Distributed Artificial Intelligence (DAI), Regulatory Policy and Economics, Implementation, 39(5), 106–112.Google Scholar
  5. 5.
    Hoque, S., & Arif, W. (2017). Performance analysis of cognitive radio networks with generalized call holding time distribution of secondary user. Telecommunication Systems, 66(1), 95–108.CrossRefGoogle Scholar
  6. 6.
    Salameh, O., De Turck, K., Bruneel, H., Blondia, C., & Wittevrongel, S. (2017). Analysis of secondary user performance in cognitive radio networks with reactive spectrum handoff. Telecommunication Systems, 65(3), 539–550.CrossRefGoogle Scholar
  7. 7.
    Duy, T. T., & Son, P. N. (2017). A novel adaptive spectrum access protocol in cognitive radio with primary multicast network, secondary user selection and hardware impairments. Telecommunication Systems, 65(3), 525–538.CrossRefGoogle Scholar
  8. 8.
    Biagi, M., Petroni, A., Colonnese, S., Cusani, R., & Scarano, G. (2016). On rethinking cognitive access for underwater acoustic communications. IEEE Journal of Oceanic Engineering, 41(4), 1045–1060.CrossRefGoogle Scholar
  9. 9.
    Yang, W. B., & Yang, T. C. (2006). Characterization and modeling of underwater acoustic communications channels for frequency-shift-keying signals. In OCEANS 2006 (pp. 1–6).Google Scholar
  10. 10.
    Christhu, R. M., & Sukumaran, R. (2016). Stochastic network calculus for various fading techniques in underwater wireless communication. International Journal of Applied Mathematics and Statistics, 54(3), 100–112.Google Scholar
  11. 11.
    Llor, J., & Malumbres, M. P. (2013). Statistical modeling of large-scale signal path loss in underwater acoustic networks. Sensors, 13(2), 2279–2294.CrossRefGoogle Scholar
  12. 12.
    Fredricks, A., Colosi, J. A., Lynch, J. F., Gawarkiewicz, G., Chiu, C. S., & Abbot, P. (2005). Analysis of multipath scintillations from long range acoustic transmissions on the New England continental slope and shelf. The Journal of the Acoustical Society of America, 117(3), 1038–1057.CrossRefGoogle Scholar
  13. 13.
    Stojanovic, M. (2006). Underwater wireless communications: Current achievements and research challenges. IEEE Oceanic Engineering Society Newsletter, 41(2), 1–5.Google Scholar
  14. 14.
    Tomasi, B., Casari, P., Badia, L., & Zorzi, M. (2010). A study of incremental redundancy hybrid ARQ over Markov channel models derived from experimental data. In Proceedings of the fifth ACM international workshop on underwater networks (p. 4). London: ACM.Google Scholar
  15. 15.
    Katsnelson, B., Petnikov, V., & Lynch, J. (2012). Fundamentals of shallow water acoustics. Berlin: Springer.CrossRefGoogle Scholar
  16. 16.
    Rappaport, T. S. (1996). Wireless communications: Principles and practice (Vol. 2). New Jersey: Prentice Hall PTR.Google Scholar
  17. 17.
    Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The Computer Journal, 7(4), 308–313.CrossRefGoogle Scholar
  18. 18.
    Dennis, J. E., & Woods, D. J. (1987). Optimization on microcomputers: The Nelder–Mead simplex algorithm. New Computing Environments: Microcomputers in Large-Scale Computing, 11, 6–122.Google Scholar
  19. 19.
    Xie, P., Cui, J. H., & Lao, L. (2006). VBF: Vector-based forwarding protocol for underwater sensor networks. In International conference on research in networking (pp. 1216–1221). Berlin: Springer.Google Scholar
  20. 20.
    Qureshi, U. M., Shaikh, F. K., Aziz, Z., Shah, S. M. Z. S., Sheikh, A. A., Felemban, E., et al. (2016). Rf path and absorption loss estimation for underwater wireless sensor networks in different water environments. Sensors, 16(6), 890.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringNational Institute of Technology CalicutKozhikodeIndia

Personalised recommendations