Advertisement

Telecommunication Systems

, Volume 71, Issue 4, pp 585–599 | Cite as

Congestion probabilities in the X2 link of LTE networks

  • P. I. Panagoulias
  • I. D. MoscholiosEmail author
Article
  • 85 Downloads

Abstract

In this paper, first we review two multirate loss models, whereby we can assess the call-level QoS of the Long Term Evolution X2 link supporting calls of different service-classes with fixed bandwidth requirements. The X2 interface directly connects two neighboring evolved NodeBs and is mainly responsible for the transfer of user-plane and control-plane data during a handover. In both models, the X2 interface is modelled as a link of fixed capacity. Handover calls are accepted in the X2 link whenever there exists available bandwidth, i.e., no QoS guarantee is achieved for high-speed calls. Secondly, we propose three multirate loss models where calls arrive in the X2 link according to a quasi-random process and compete for the available bandwidth under the Multiple Fractional Channel Reservation (MFCR) policy, the Bandwidth Reservation (BR) policy and the Complete Sharing (CS) policy. The MFCR/BR policies allow the reservation of real/integer number of channels, respectively, in order to benefit high-speed calls. The CS policy allows calls to enter the system when there exists available bandwidth (no reservation is allowed). We propose approximate but recursive formulas for the calculation of time and call congestion probabilities as well as link utilization for all three policies. The accuracy of the proposed formulas is verified through simulation and found to be highly satisfactory.

Keywords

LTE X2 Time-call congestion Quasi-random Recursive formula Reservation 

Notes

References

  1. 1.
    Holma, H., & Toskala, A. (2011). LTE for UMTS: Evolution to LTE advanced. New York: Wiley.Google Scholar
  2. 2.
    Ahmad, R., Sundararajan, E., & Othman, N. (2017). Handover in LTE-advanced wireless networks: state of art and survey of decision algorithms. Telecommunication Systems, 66(3), 533–558.Google Scholar
  3. 3.
    Blogowski, A., Klopfenstein, O. & Renard, B. (2012). Dimensioning X2 backhaul link in LTE networks. In Proceedings of IEEE ICC, Ottawa, Canada (pp. 2768–2773).Google Scholar
  4. 4.
    Peng, M., Liang, D., Wei, Y., Li, J., & Chen, H. (2013). Self-configuration and self-optimization in LTE-advanced heterogeneous networks. IEEE Communications Magazine, 51(5), 36–45.Google Scholar
  5. 5.
    Widjaja, I, & Roche, H. (2009). Sizing X2 bandwidth for Inter-connected eNBs. In Proceedings of IEEE VTC Fall, Anchorage, Alaska, USA (pp. 1–5).Google Scholar
  6. 6.
    Renard, B., Elayoubi, S., & Simonian, A. (2012). A dimensioning method for the LTE X2 interface. In Proceedings of IEEE WCNC, Shanghai, China (pp. 2718–2723).Google Scholar
  7. 7.
    Akimaru, H., & Kawashima, K. (1999). Teletraffic—Theory and applications (2nd ed.). Berlin: Springer.Google Scholar
  8. 8.
    Frost, V., & Melamed, B. (1994). Traffic modeling for telecommunications networks. IEEE Communications Magazine, 32(3), 70–81.Google Scholar
  9. 9.
    Lam, D., Cox, D., & Widom, J. (1997). Teletraffic modeling for personal communications services. IEEE Communications Magazine, 35(2), 79–87.Google Scholar
  10. 10.
    Kaufman, J. (1981). Blocking in a shared resource environment. IEEE Transactions on Communications, 29(10), 1474–1481.Google Scholar
  11. 11.
    Roberts, J. (1981). A service system with heterogeneous user requirements. In G. Pujolle (Ed.), Performance of data communications systems and their applications (pp. 423–431). Amsterdam: North Holland.Google Scholar
  12. 12.
    Panagoulias, P., & Moscholios, I. (2016). Evaluation of multirate loss models for the X2 link of LTE networks. In Proceedings of IEICE ICTF, Patras, Greece.Google Scholar
  13. 13.
    Roberts, J. (1983). Teletraffic models for the telecom 1 integrated services network. In Proceedings of 10th ITC, paper 1.1-2, Montreal, Canada.Google Scholar
  14. 14.
    Rahman, M., & Alfa, A. (2009). Computationally efficient method for analyzing guard channel schemes. Telecommunication Systems, 41(1), 1–11.Google Scholar
  15. 15.
    Stasiak, M., Glabowski, M., Wisniewski, A., & Zwierzykowski, P. (2011). Modeling and dimensioning of mobile networks. New York: Wiley.Google Scholar
  16. 16.
    Moscholios, I., Vardakas, J., Logothetis, M., & Boucouvalas, A. (2011). A batched Poisson multirate loss model supporting elastic traffic under the bandwidth reservation policy. In Proceedings of IEEE ICC, Kyoto, Japan (pp. 1–6).Google Scholar
  17. 17.
    Moscholios, I., Vardakas, J., Logothetis, M., & Koukias, M. (2013). A quasi-random multirate loss model supporting elastic and adaptive traffic under the bandwidth reservation policy. International Journal on Advances in Networks and Services, 6(3&4), 163–174.Google Scholar
  18. 18.
    Abdulova, V., & Aybay, I. (2014). Performance evaluation of non-prioritized and prioritized call admission control schemes in wireless cellular networks. Wireless Personal Communications, 78(1), 69–84.Google Scholar
  19. 19.
    Omheni, N., Gharsallah, A., & Zarai, F. (2018). An enhanced radio resource management based MIH policies in heterogeneous wireless networks. Telecommunication Systems, 67(4), 577–592.Google Scholar
  20. 20.
    Cruz-Prez, F., Vazquez-Avila, J., & Ortigoza-Guerrero, L. (2004). Recurrent formulas for the multiple fractional channel reservation strategy in multi-service mobile cellular networks. IEEE Communications Letters, 8(10), 629–631.Google Scholar
  21. 21.
    Vazquez-Avila, J., Cruz-Prez, F., & Ortigoza-Guerrero, L. (2006). Performance analysis of fractional guard channel policies in mobile cellular networks. IEEE Transactions on Wireless Communications, 5(2), 301–305.Google Scholar
  22. 22.
    Tsang, D., & Ross, K. (1990). Algorithms to determine exact blocking probabilities for multirate tree networks. IEEE Transactions on Communications, 38(8), 1266–1271.Google Scholar
  23. 23.
    Ni, J., Tsang, D., Tatikonda, S., & Bensaou, B. (2007). Optimal and structured call admission control policies for resource-sharing systems. IEEE Transactions on Communications, 55(1), 158–170.Google Scholar
  24. 24.
    Moscholios, I., Logothetis, M., Vardakas, J., & Boucouvalas, A. (2015). Performance metrics of a multirate resource sharing teletraffic model with finite sources under the threshold and bandwidth reservation policies. IET Networks, 4(3), 195–208.Google Scholar
  25. 25.
    Abdulova, V., & Aybay, I. (2015). Prioritized new call threshold policy for wireless cellular networks. Wireless Personal Communications, 85(4), 2549–2563.Google Scholar
  26. 26.
    Moscholios, I., Vassilakis, V., Logothetis, M., & Boucouvalas, A. (2016). A probabilistic threshold-based bandwidth sharing policy for wireless multirate loss networks. IEEE Wireless Communications Letters, 5(3), 304–307.Google Scholar
  27. 27.
    Moscholios, I., Logothetis, M., & Boucouvalas, A. (2016). Blocking probabilities of elastic and adaptive calls in the Erlang multirate loss model under the threshold policy. Telecommunication Systems, 62(1), 245–262.Google Scholar
  28. 28.
    Moscholios, I., Logothetis, M., & Shioda, S. (2017). Performance evaluation of multirate loss systems supporting cooperative users with a probabilistic behavior. IEICE Transactions on Communications, E100-B(10), 1778–1788.Google Scholar
  29. 29.
    Kaufman, J., & Rege, K. (1996). Blocking in a shared resource environment with batched Poisson arrival processes. Performance Evaluation, 24(4), 249–263.Google Scholar
  30. 30.
    Moscholios, I., Kallos, G., Vassilakis, V., & Logothetis, M. (2014). Congestion probabilities in CDMA-based networks supporting batched Poisson input traffic. Wireless Personal Communications, 79(2), 1163–1186.Google Scholar
  31. 31.
    Moscholios, I., Vassilakis, V., & Sarigiannidis, P. (2018). Performance modelling of a multirate loss system with batched Poisson arrivals under a probabilistic threshold policy. IET Networks, 7(4), 242–247.Google Scholar
  32. 32.
    Mehmet-Ali, M. (1999). Call-burst blocking and call admission control in a broadband network with bursty sources. Performance Evaluation, 38(1), 1–19.Google Scholar
  33. 33.
    Moscholios, I., Nikolaropoulos, P., & Logothetis, M. (2003). Call level blocking of ON–OFF traffic sources with retrials under the complete sharing policy. In Proceedings of 18th ITC, Berlin, Germany (pp. 811–820).Google Scholar
  34. 34.
    Moscholios, I., Logothetis, M., & Koukias, M. (2007). An ON–OFF multirate loss model of finite sources. IEICE Transactions on Communications, E90-B(7), 1608–1619.Google Scholar
  35. 35.
    Yashkov, S., & Yashkova, A. (2007). Processor sharing: A survey of the mathematical theory. Automation and Remote Control, 68(9), 1662–1731.Google Scholar
  36. 36.
    Lei, L., Lin, C., Cai, J., & Shen, X. (2008). Flow-level performance of opportunistic OFDM-TDMA and OFDMA networks. IEEE Transactions on Wireless Communications, 7(12), 5461–5472.Google Scholar
  37. 37.
    Yong, S., Song, W., & Zhong, Z. (2013). Resource allocation for aggregate multimedia and healthcare services over heterogeneous multi-hop wireless networks. Wireless Personal Communications, 69(1), 229–251.Google Scholar
  38. 38.
    Moscholios, I., Vardakas, J., Logothetis, M., & Boucouvalas, A. (2013). Congestion probabilities in a batched Poisson multirate loss model supporting elastic and adaptive traffic. Annals of Telecommunications, 68(5), 327–344.Google Scholar
  39. 39.
    Moscholios I., Logothetis M., Boucouvalas A., & Vassilakis V. (2015). An Erlang multirate loss model supporting elastic traffic under the threshold policy. In Proceedings of IEEE ICC, London, U.K. Google Scholar
  40. 40.
    Stasiak M. (2016). Queuing systems for the internet. IEICE Transactions on Communications, E99-B(6), 1234–1242.Google Scholar
  41. 41.
    Hanczewski, S., Stasiak, M., & Weissenberg, J. (2018). Queueing model of a multiservice system with elastic and adaptive traffic. Computer Networks, 147, 146–161.Google Scholar
  42. 42.
    Li, X., Toseef, U., Dulas, D., Bigos, W., Gorg, C., Timm-Giel, A., et al. (2013). Dimensioning of the LTE access network. Telecommunication Systems, 52(4), 2637–2654.Google Scholar
  43. 43.
    Glabowski, M., Kaliszan, A., & Stasiak, M. (2008). Asymmetric convolution algorithm for blocking probability calculation in full-availability group with bandwidth reservation. IET Circuits, Devices & Systems, 2(1), 87–94.Google Scholar
  44. 44.
    Huang, Q., Ko, K., & Iversen, V. (2011). A new convolution algorithm for loss probability analysis in multiservice networks. Performance Evaluation, 68(1), 7687.Google Scholar
  45. 45.
    Stasiak, M., Parniewicz, D., & Zwierzykowski, P. (2013). Traffic engineering for multicast connections in multiservice cellular network. IEEE Transactions on Industrial Informatics, 9(1), 262–270.Google Scholar
  46. 46.
    Moscholios, I., Logothetis, M., Vardakas, J., & Boucouvalas, A. (2015). Congestion probabilities of elastic and adaptive calls in Erlang–Engset multirate loss models under the threshold and bandwidth reservation policies. Computer Networks, 92(1), 1–23.Google Scholar
  47. 47.
    Ge, X., Tu, S., Han, T., Li, Q., & Mao, G. (2015). Energy efficiency of small cell backhaul networks based on Gauss Markov mobile models. IET Networks, 4(2), 158–167.Google Scholar
  48. 48.
    Malila, B., Falowo, O., & Ventura, N. (2017). An energy efficiency analysis for outdoor wireless small cell backhaul. In Proceedings of IEEE WCNC, San Francisco, USA.Google Scholar
  49. 49.
    Ge, X., Cheng, H., Mao, G., Yang, Y., & Tu, S. (2016). Vehicular communications for 5G cooperative small cell networks. IEEE Transactions on Vehicular Technology, 65(10), 7882–7894.Google Scholar
  50. 50.
    Assefa, T., Hoque, R., Tragos, E., & Dimitropoulos, X. (2017). SDN-based local mobility management with X2-interface in femtocell networks. In Proceedings of IEEE CAMAD, Lund, Sweden.Google Scholar
  51. 51.
    Celebi, H., & Gvenc, I. (2017). Load analysis and sleep mode optimization for energy-efficient 5G small cell networks. In Proceedings of IEEE ICC Workshop on 5G ultra dense networks, Paris, France.Google Scholar
  52. 52.
    Ren, Y., Chen, J., & Chin, J. (2018). Impacts of S1 and X2 Interfaces on eMBMS handover failure: Solution and performance analysis. IEEE Transactions on Vehicular Technology, 67(7), 6599–6614.Google Scholar
  53. 53.
    Park G., & Song H. (2018). Cooperative base station caching and X2 link traffic offloading system for video streaming over SDN-enabled networks. IEEE Transactions on Mobile Computing https://doi.org/10.1109/TMC.2018.2869756.
  54. 54.
    Zonoozi, M., & Dassanayake, P. (1997). User mobility modeling and characterization of mobility patterns. IEEE Journal on Selected Areas in Communications, 15(7), 1239–1252.Google Scholar
  55. 55.
    Yeung, K., & Nanda, S. (1996). Channel management in microcell/macrocell cellular radio systems. IEEE Transactions on Vehicular Technology, 45(4), 601–612.Google Scholar
  56. 56.
    Thomas, R., Gilbert, H., & Mazziotto, G. (1988). Influence of the movement of the mobile station on the performance of a radio cellular network. In Proceedings of 3rd nordic seminar, paper 9.4, Copenhagen, Denmark.Google Scholar
  57. 57.
    Xie, H., & Goodman, D. (1993). Mobility models and biased sampling problem. In Proceedings of 2nd International Conference on Universal Personal Communications, Ottawa, Canada.Google Scholar
  58. 58.
    Roy, R. (2011). Handbook of mobile ad hoc networks for mobility models. Berlin: Springer.Google Scholar
  59. 59.
    Stamatelos, G., & Hayes, J. (1994). Admission control techniques with application to broadband networks. Computer Communications, 17(9), 663–673.Google Scholar
  60. 60.
    Simscript III. http://www.simscript.com. Last accessed November, 2018

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Informatics and TelecommunicationsUniversity of PeloponneseTripolisGreece

Personalised recommendations