Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A stochastic approximation approach to active queue management

  • 276 Accesses

  • 7 Citations

Abstract

Recently, a dynamic adaptive queue management with random dropping (AQMRD) scheme has been developed to capture the time-dependent variation of average queue size by incorporating the rate of change of average queue size as a parameter. A major issue with AQMRD is the choice of parameters. In this paper, a novel online stochastic approximation based optimization scheme is proposed to dynamically tune the parameters of AQMRD and which is also applicable for other active queue management (AQM) algorithms. Our optimization scheme significantly improves the throughput, average queue size, and loss-rate in relation to other AQM schemes.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    Floyd, S., & Jacobson, V. (1993). Random early detection gateways for congestion avoidance. IEEE/ACM Transactions on Networking, 1(4), 397–413.

  2. 2.

    Athuraliya, S., Li, V. H., Low, S. H., & Elissa, Q. Y. (2002). REM: Active queue management. IEEE Network, 15(3), 48–53.

  3. 3.

    Meckenney, P. E. (1990). Stochastic fair queuing. Proceedings IEEE INFOCOM, 2, 733–740.

  4. 4.

    Hollot, C. V., Misra, V., Towsley, D., Gong, W. (2001). On designing improved controllers for AQM routers supporting TCP flows. In Proceedings of the IEEE INFOCOM (pp. 1726–1734).

  5. 5.

    Feng, W., Shin, K. G., Kandlur, D. D., & Saha, D. (2002). The BLUE active queue management algorithms. IEEE/ACM Transactions on Networking, 10(4), 513–528.

  6. 6.

    Feng, G., Agarwal, A . K., Jayaraman, A., & Siew, C . K. (2004). Modified RED gateways under bursty traffic. IEEE Communications Letter, 8(5), 323–325.

  7. 7.

    Floyd, S., Gummadi, R., Shenker, S. (2001). Adaptive RED: An algorithm for increasing the robustness of RED’s active queue management. Technical Report, UC, Berkeley, CA, (Online) http://www.icir.org/floyd/papers.html.

  8. 8.

    Feng, C. W., Huang, L. F., Xu, C., & Chang, Y. C. (2017). Congestion control scheme performance analysis based on nonlinear RED. IEEE System Journal, 99, 1–8.

  9. 9.

    Verma, R., Iyer, A., & Karandikar, A. (2003). Active queue management using adaptive RED. Journal of Communications and Networks, 5(3), 275–281.

  10. 10.

    Zadeh, H. Y., Habibi, A., Li, X., Jafarkhani, H., & Bauer, C. (2012). A statistical study of loss-delay tradeoff for RED queues. IEEE Transactions on Communications, 60(7), 1966–1974.

  11. 11.

    Xu, Q., & Sun, J. (2012). New active queue management scheme based on statistical analysis. In Proceedings of WCICA ’12, (pp. 2562–2565). Beijing, China.

  12. 12.

    Kulatungay, C., Kuhnz, N., Fairhursty, G., & Ros, D. (2015). Tackling Bufferbloat in capacity-limited networks. In EuCNC’15 (pp. 381-385). doi:10.1109/EuCNC.2015.7194103.

  13. 13.

    Wang, J., Rong, L., & Liu, Y. (2008). A robust proportional controller for AQM based on optimized second-order system model. Computer Communications, 31(10), 2468–2477.

  14. 14.

    Chavan, K., Kumar, R. G., Belur, M. N., & Karandikar, A. (2011). Robust active queue management for wireless networks. IEEE Transactions on Control Systems Technology, 19(6), 1630–1638.

  15. 15.

    Tan, L., Zhang, W., Peng, G., & Chen, G. (2006). Stability of TCP/RED systems in AQM routers. IEEE Transactions on Automatic Control, 51(8), 1393–1398.

  16. 16.

    Woo, S., & Kim, K. (2010). Tight upper bound for stability of TCP/RED systems in AQM routers. IEEE Communications Letters, 14(7), 682–684.

  17. 17.

    Qazi, I. A., Andrew, L. L. H., & Znati, T. K. (2012). Congestion control with multipacket feedback. IEEE/ACM Transactions on Networking, 20(6), 1721–1733.

  18. 18.

    Poojary, S., & Sharma, V. (2016). Analysis of multiple flows using different high speed TCP protocols on a general network. Performance Evaluation, 104, 4262.

  19. 19.

    Akyildiz, I. F., Lee, A., Wang, P., Luo, M., & Chou, W. (2015). Research challenges for traffic engineering in software defined networks. IEEE Network, 30(3), 52–58.

  20. 20.

    Akyildiz, I. F., Nie, S., Lin, S.-C., & Chandrasekaran, M. (2016). 5G roadmap: 10 key enabling technologies. Computer Networks, 106(4), 17–48.

  21. 21.

    Harel, A., Namn, S., & Sturm, J. (1999). Simple bounds for closed queuing networks. Queueing Systems, 31(1), 125–135.

  22. 22.

    Padhye, J., Firoiu, V., Towsley, D. F., & Kurose, J. F. (2000). Modeling TCP Reno performance: A simple model and its empirical validation. IEEE/ACM Transactions on Networking, 8, 133–145.

  23. 23.

    Yan, J., Muhlbauer, W., & Plattner, B. (2011). An analytical model for streaming over TCP. In NEW2AN (pp. 370–381).

  24. 24.

    Yan, J., & Plattner, B. (2013). A simple solution to find the distribution of TCP window sizes. IEEE Communications Letters, 17(2), 417–419.

  25. 25.

    Gemikonakli, E., Ever, E., Mapp, G., & Gemikonaklii, O. (2017). Admission control and buffer management of wireless communication systems with mobile stations and integrated voice and data services. Telecommunication Systems, 65(4), 663–675.

  26. 26.

    Salah, K., & Kafhali, S. E. (2017). Performance modeling and analysis of hypoexponential network servers. Telecommunication Systems, 65(4), 717–728.

  27. 27.

    Prashanth, L. A., Bhatnagar, S., Fu, M., & Marcus, S. (2017). Adaptive system optimization using random directions stochastic approximation. IEEE Transactions on Automatic Control, 62(5), 2223–2238.

  28. 28.

    Spall, J. C. (1992). Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. IEEE Transactions on Automatic Control, 37(3), 332–341.

  29. 29.

    Bhatnagar, S. (2007). Adaptive Newton-based smoothed functional algorithms for simulation optimization. ACM Transactions on Modeling and Computer Simulation, 18(1), 2:1–2:35.

  30. 30.

    Karmeshu, Bhatnagar, S., & Mishra, V. K. (2011). An optimized SDE model for slotted aloha. IEEE Transactions on Communications, 59(6), 1502–1508.

  31. 31.

    Bhatnagar, S., Prasad, H. L., & Prashanth, L. A. (2013). Stochastic recursive algorithms for optimization: Simultaneous perturbation methods., Lecture notes in control and information sciences London: Springer.

  32. 32.

    Patro, R. K., & Bhatnagar, S. (2009). A probabilistic constrained nonlinear optimization framework to optimize RED parameters. Performance Evaluation, 66(2), 81–104.

  33. 33.

    Karmeshu, Patel, S., & Bhatnagar, S. (2017). Adaptive mean queue size and its rate of change: Queue management with random dropping. Telecommunication Systems, 65(2), 281–295.

  34. 34.

    Kushner, H. J., & Clark, D. S. (1978). Stochastic approximation methods for constrained and unconstrained systems. New York: Springer.

  35. 35.

    Wang, H., & Shin, K. G. (1999). Refined design of random early detection gateways. In Proceedings of IEEE GLOBECOM (pp. 769–775).

  36. 36.

    Hollot, C. V., Misra, V., Towsley, D., & Gong, W. (2002). Analysis and design of controllers for AQM routers supporting TCP flows. IEEE Transactions on Automatic Control, 47(6), 945–959.

  37. 37.

    Low, S. H., Paganini, F., Wang, J., & Doyle, J. C. (2003). Linear stability of TCP/RED and a scalable control. Computer Networks Journal, 43(5), 633–647.

  38. 38.

    Bhatnagar, S., & Patro, R. K. (2009). A proof of convergence of the B-RED and P-RED algorithms for random early detection. IEEE Communications Letters, 13(10), 809–811.

  39. 39.

    Adams, R. (2013). Active queue management: A survey. IEEE Communations Surveys & Tutorials, 15(3), 1425–1476.

  40. 40.

    Wu, Y., Min, G., & Yang, L. T. (2013). Performance analysis of hybrid wireless networks under bursty and correlated traffic. IEEE Transactions on Vehicular Technology, 62(1), 449–454.

  41. 41.

    Wang, C., Li, B., Thomas Hou, Y., Sohraby, K. & Lin, Y. (2004). LRED: A robust active queue management scheme based on packet loss ratio. In Proceedings on 23rd Annual Joint Conference on IEEE INFOCOM (vol. 1, pp. 112).

  42. 42.

    Bhatnagar, S., Fu, M. C., Marcus, S. I., & Wang, I. J. (2003). Two-timescale simultaneous perturbation stochastic approximation using deterministic perturbation sequences. ACM Transactions on Modelling and Computer Simulation, 13(2), 180–209.

  43. 43.

    Bhatnagar, S. (2005). Adaptive multivariate three-timescale stochastic approximation algorithms for simulation based optimization. ACM Transactions on Modeling and Computer Simulation, 15(1), 74–107.

  44. 44.

    Borkar, V. S. (2008). Stochastic approximation: A dynamical systems viewpoint. Cambridge: Cambridge University Press.

  45. 45.

    Bhatnagar, S., & Borkar, V. S. (1997). Multiscale stochastic approximation for parametric optimization of hidden Markov models. Probability in the Engineering and Informational Sciences, 11, 509–522.

  46. 46.

    Bhatnagar, S., Fu, M. C., Marcus, S. I., & Bhatnagar, S. (2001). Two timescale algorithms for simulation optimization of hidden Markov models. IIE Transactions (Pritsker special issue on simulation), 3, 245–258.

Download references

Author information

Correspondence to Shalabh Bhatnagar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bhatnagar, S., Patel, S. & Karmeshu A stochastic approximation approach to active queue management. Telecommun Syst 68, 89–104 (2018). https://doi.org/10.1007/s11235-017-0377-1

Download citation

Keywords

  • Active queue management (AQM)
  • Stochastic approximation
  • Dropping probability
  • Heavy traffic conditions
  • Stochastic simulation
  • Traffic control