Advertisement

Telecommunication Systems

, Volume 67, Issue 4, pp 763–780 | Cite as

Optimal energy-delay tradeoff for opportunistic spectrum access in cognitive radio networks

  • Oussama HabachiEmail author
  • Yezekael Hayel
  • Rachid El-Azouzi
Article

Abstract

Cognitive radio (CR) has been considered as a promising technology to enhance spectrum efficiency via opportunistic transmission at link level. Basic CR features allow secondary users (SUs) to transmit only when the licensed channel is not occupied by primary users (PUs). However, waiting for an idle time slot may lead to large packet delays and high energy consumption. We further consider that the SU may decide, at any moment, to use another dedicated way of communication (4G) in order to transmit his packets. Thus, we consider an Opportunistic Spectrum Access (OSA) mechanism that takes into account packet delay and energy consumption. We formulate the OSA problem as a Partially Observable Markov Decision Process (POMDP) by explicitly considering the energy consumption as well as packets’ delay, which are often ignored in existing OSA solutions. Specifically, we consider a POMDP with an average reward criterion. We derive structural properties of the value function and we show the existence of optimal strategies in the class of the threshold strategies. For implementation purposes, we propose online learning mechanisms that estimate the PU activity and determine the appropriate threshold strategy on the fly. In particular, numerical illustrations validate our theoretical findings.

Keywords

Cognitive radio POMDP OSA Online learning 

References

  1. 1.
    Hossain, E., Niyato, D., & Han, Z. (2009). Dynamic spectrum access and management in cognitive radio networks. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  2. 2.
    Mitola, J. (2000). Cognitive radio: An integrated agent architecture for software defined radio. Ph.D. Dissertation, Royal Institute of Technology (KTH), Stockholm.Google Scholar
  3. 3.
    Akyildiz, F., Lee, W.-Y., et al. (2006). NeXt generation dynamic spectrum access cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.CrossRefGoogle Scholar
  4. 4.
    Jaganathan, K., Menache, I., Modiano, E., & Zussman, G. (2011). Non-cooperative spectrum access—The dedicated vs. free spectrum choice. In Proceedings of ACM MOBIHOC’11.Google Scholar
  5. 5.
    Zhao, Q., Tong, L., Swami, A., & Chen, Y. (2007). Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks: A POMDP framework. IEEE Journal on Selected Areas in Communications, 25(3), 589–600.CrossRefGoogle Scholar
  6. 6.
    Zheng, H., & Peng, C. (2005). Collaboration and fairness in opportunistic spectrum access. In Proceedings of IEEE international conference on communication (ICC).Google Scholar
  7. 7.
    Shi, Y., Hou, Y., Zhou, H., & Midkiff, S. (2012). Distributed cross-layer optimization for cognitive radio networks. IEEE Transactions on Vehicular Technology, 59(8), 4058–4069.CrossRefGoogle Scholar
  8. 8.
    Min, A., Kim, K., Singh, J., & Shin, K. (2011). Opportunistic spectrum access for mobile cognitive radios. In Proceedings of IEEE Infocom.Google Scholar
  9. 9.
    Hoang, A. T., Liang, Y. C., Wong, D. T. C., Zeng, Y., & Zhang, R. (2008). Opportunistic spectrum access for energy-constrained cognitive radios. IEEE Transactions on Wireless Communications, 8(3), 1206–1211.CrossRefGoogle Scholar
  10. 10.
    Chen, Y., Zhao, Q., & Swami, A. (2009). Distributed spectrum sensing and access in cognitive radio networks with energy constraint. IEEE Transactions on Signal Processing, 57(2), 783–797.CrossRefGoogle Scholar
  11. 11.
    Sultan, A. (2012). Sensing and transmit energy optimization for an energy harvesting cognitive radio. IEEE Wireless Communication Letters, 1, 500–503.CrossRefGoogle Scholar
  12. 12.
    Garcia-Saaverdra, A., Serrano, P., & Banchs, A. (2014). Energy-efficient optimization for distributed opportunistic scheduling. IEEE Communications Letters, 18(6), 1083–1086.CrossRefGoogle Scholar
  13. 13.
    Xiong, C., Lu, L., & Li, G. (2014). Energy-efficient spectrum access in cognitive radios. IEEE Journal on Selected Areas in Communications, 32(3), 550–562.CrossRefGoogle Scholar
  14. 14.
    Tsiropoulos, G. I., Dobre, O. A., Ahmed, M. H., & Baddour, K. E. (2016). Radio resource allocation techniques for efficient spectrum access in cognitive radio networks. IEEE Communications Surveys & Tutorials, 18(1), 824–847.CrossRefGoogle Scholar
  15. 15.
    Althunibat, S., Di Renzo, M., & Granelli, F. (2015). Towards energy-efficient cooperative spectrum sensing for cognitive radio networks: An overview. Telecommunication Systems, 59, 77–91.CrossRefGoogle Scholar
  16. 16.
    Wu, Y., Tsang, D., & Qian, L. (2012). Energy-efficient delay-constrained transmission and sensing for cognitive radio systems. IEEE Transactions on Vehicular Technology, 61(7), 3100–3113.CrossRefGoogle Scholar
  17. 17.
    Pei, Y., Liang, Y., Teh, K., & Li, K. (2011). Energy-efficient design of sequential channel sensing in cognitive radio networks: Optimal sensing strategy, power allocation, and sensing order. IEEE Journal on Selected Areas in Communication, 29(8), 1648–1659.CrossRefGoogle Scholar
  18. 18.
    Mahapatra, R., Nijsure, Y., Kaddoum, G., Hassan, N. U., & Yuen, C. (2016). Energy efficiency tradeoff mechanism towards wireless green communication: A survey. IEEE Communications Surveys & Tutorials, 18(1), 686–705.CrossRefGoogle Scholar
  19. 19.
    Habachi, O., El Azouzi, R., & Hayel, Y. (2013). A Stackelberg model for opportunistic sensing in cognitive radio networks. Transactions on Wireless Communications, 12(5), 2148–2159.CrossRefGoogle Scholar
  20. 20.
    Kaelbling, L., Littman, M., & Cassandra, A. (1998). Planning and acting in partially observable stochastic domains. Artificial Intelligence Journal, 101, 99–134.CrossRefGoogle Scholar
  21. 21.
    Putterman, M. L. (2005). Markov decision process discrete stochastic dynamic programming. London: Wiley.Google Scholar
  22. 22.
    Smallwood, R., & Sondik, E. (1973). The optimal control of partially observable Markov decision processes over a finite horizon. Operations Research, 21, 1071–1088.CrossRefGoogle Scholar
  23. 23.
    Lovejoy, W. S. (1987). Some monotonicity results for partially observed Markov decision processes. Operations Research, 35(5), 736–743.CrossRefGoogle Scholar
  24. 24.
    Shellhammer, S. J., Sadek, A. K., & Zhang, W. (2009). Technical challenges for cognitive radio in the TV white space spectrum. In 2009 Information Theory and Applications Workshop (pp. 323–333). San Diego, CA.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Oussama Habachi
    • 1
    Email author
  • Yezekael Hayel
    • 1
  • Rachid El-Azouzi
    • 1
  1. 1.XLIMUniversity of LimogesLimogesFrance

Personalised recommendations