Advertisement

Telecommunication Systems

, Volume 67, Issue 2, pp 281–295 | Cite as

A queueing model of an energy harvesting sensor node with data buffering

  • Eline De Cuypere
  • Koen De Turck
  • Dieter FiemsEmail author
Article

Abstract

Battery lifetime is a key impediment to long-lasting low power sensor nodes and networks thereof. Energy harvesting—conversion of ambient energy into electrical energy—has emerged as a viable alternative to battery power. Indeed, the harvested energy mitigates the dependency on battery power and can be used to transmit data. However, unfair data delivery delay and energy expenditure among sensors remain important issues for such networks. We study performance of sensor networks with mobile sinks: a mobile sink moves towards the transmission range of the different static sensor nodes to collect their data. We propose and analyse a Markovian queueing system to study the impact of uncertainty in energy harvesting, energy expenditure, data acquisition and data transmission. In particular, the energy harvesting sensor node is described by a system with two queues, one queue corresponding to the battery and the other to the data buffer. We illustrate our approach by numerical examples which show that energy harvesting correlation considerably affects performance measures like the mean data delay and the effective data collection rate.

Keywords

Wireless Sensor Network Energy Harvesting Markov process 

References

  1. 1.
    Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422.CrossRefGoogle Scholar
  2. 2.
    Akyildiz, I. F., & Vuran, M. C. (2010). Wireless sensor networks. New York: Wiley.CrossRefGoogle Scholar
  3. 3.
    Tan, Y. K., & Panda, S. K. (2010). Review of energy harvesting technologies for sustainable wireless sensor network. In W. Seah & Y. K. Tan (Eds.), Sustainable wireless sensor network (Chap. 2). INTECH.Google Scholar
  4. 4.
    Alemdar, H., & Ersoy, C. (2010). Wireless sensor networks for healthcare: A survey. Computer Networks, 54(15), 2688–2710.CrossRefGoogle Scholar
  5. 5.
    Sahu, A., Fernandez, E. B., Cardei, M., & Vanhilst, M. (2010). A pattern for a sensor node. In Proceedings of the 17th conference on pattern languages of programs.Google Scholar
  6. 6.
    Sudevalayam, S., & Kulkarni, P. (2011). Energy harvesting sensor nodes: Survey and implications. IEEE Communications Surveys and Tutorials, 13, 443–461.CrossRefGoogle Scholar
  7. 7.
    Anastasi, G., Conti, M., Di Francesco, M., & Passarella, A. (2009). Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks, 7, 537–568.CrossRefGoogle Scholar
  8. 8.
    Paradiso, J. A., & Starner, T. (2005). Energy scavenging for mobile and wireless electronics. IEEE Pervasive Computing, 4, 18–27.CrossRefGoogle Scholar
  9. 9.
    Gunduz, D., Stamatiou, K., Michelusi, N., & Zorzi, M. (2014). Designing intelligent energy harvesting communication systems. IEEE Communications Magazine, 52(1), 210–216.CrossRefGoogle Scholar
  10. 10.
    Lu, X., Wang, P., Niyato, D., Kim, D. I., & Han, Z. (2015). Wireless networks with RF energy harvesting: A contemporary survey. IEEE Communications Surveys and Tutorials, 17(2), 757–789.CrossRefGoogle Scholar
  11. 11.
    Yang, C., & Chin, K. (2017). On nodes placement in energy harvesting wireless sensor networks for coverage and connectivity. IEEE Transactions on Industrial Informatics, 13(1), 27–36.CrossRefGoogle Scholar
  12. 12.
    Yang, F., Du, L., Chen, W. G., Li, J., Wang, Y. Y., & Wang, D. S. (2017). Hybrid energy harvesting for condition monitoring sensors in power grids. Energy, 118, 435–445.CrossRefGoogle Scholar
  13. 13.
    Bi, Y., Niu, J., Sun, L., Huangfu, W., & Sun, Y. (2007). Moving schemes for mobile sinks in wireless sensor networks. In IEEE international performance computing, and communications conference, (pp. 101–108).Google Scholar
  14. 14.
    Di Francesco, M., Das, S. K., & Anastasi, G. (2011). Data collection in wireless sensor networks with mobile elements: A survey. ACM Transactions on Sensor Networks, 8(1), 1–31.CrossRefGoogle Scholar
  15. 15.
    Gao, S., Zhang, H., & Das, S. K. (2011). Efficient data collection in wireless sensor networks with path-constrained mobile sinks. IEEE Transactions on Mobile Computing, 10(4), 592–608.CrossRefGoogle Scholar
  16. 16.
    Turgut, D., & Bölöni, L. (2009). Heuristic approaches for transmission scheduling in sensor networks with multiple mobile sinks. The Computer Journal, 54(3), 332–344.CrossRefGoogle Scholar
  17. 17.
    Yun, Y., & Xia, Y. (2010). Maximizing the lifetime of wireless sensor networks with mobile sink in delay-tolerant applications. IEEE Transactions on Mobile Computing, 9, 1308–1318.CrossRefGoogle Scholar
  18. 18.
    Liang, W., Luo, J., & Xu, X. (2010). Prolonging network lifetime via a controlled mobile sink in wireless sensor networks. In Proceedings of the IEEE global communications conference (GLOBECOM), Miami, Florida.Google Scholar
  19. 19.
    Liang, W., & Luo, J. (2011). Network lifetime maximization in sensor networks with multiple mobile sinks. In Proceedings of the IEEE conference on local computer networks (LCN), Bonn, Germany.Google Scholar
  20. 20.
    Kaswan, A., Nitesh, K., & Prasanta, J. K. (2017). Energy efficient path selection for mobile sink and data gathering in wireless sensor networks. AEU-International Journal of Electronics and Communications, 73, 110–118.CrossRefGoogle Scholar
  21. 21.
    Wang, C., Guo, S., & Yang, T. (2016). An optimization framework for mobile data collection in energy-harvesting wireless sensor networks. IEEE Transactions on Mobile Computing, 15(12), 2969–2986.CrossRefGoogle Scholar
  22. 22.
    Khan, T. H. F., & Kumar, D. S. (2016). Mobile collector aided energy reduced (MCER) data collection in agricultural wireless sensor networks. In Proceedings of the 6th IEEE international conference on advanced computing, (pp. 629–633).Google Scholar
  23. 23.
    Truong, T. T., Brown, K. N., & Sreenan, C. J. (2010). Using mobile sinks in wireless sensor networks to improve building emergency response. In Proceedings of the royal Irish academy research. Colloquium on wireless as an enabling technology.Google Scholar
  24. 24.
    Kim, C., Cho, H., Kim, S., Yang, T., & Kim, S. H. (2016). Sink mobility support scheme for continuous object tracking in wireless sensor networks. In 30th IEEE international conference on advanced information networking and applications, (pp. 452–457).Google Scholar
  25. 25.
    Sharma, V., Mukherji, U., & Joseph, V. (2010). Optimal energy management policies for energy harvesting sensor nodes. IEEE Transactions on Wireless Communications, 6, 1326–1336.CrossRefGoogle Scholar
  26. 26.
    Yang, J., & Ulukus, S. (2012). Optimal packet scheduling in an energy harvesting communication system. IEEE Transactions on Communications, 60(1), 220–230.CrossRefGoogle Scholar
  27. 27.
    Tutuncuoglu, K., & Yener, A. (2012). Optimum transmission policies for battery limited energy harvesting nodes. IEEE Transactions on Wireless Communications, 11, 1180–1189.CrossRefGoogle Scholar
  28. 28.
    Ozel, O., & Ulukus, S. (2010). Information-theoretic analysis of an energy harvesting communication system. In Proceedings of the 21st IEEE international symposium on personal, indoor and mobile radio communications, (pp. 330–335). Istanbul, Turkey, 26–30 Sept. 2010.Google Scholar
  29. 29.
    Rajesh, R., Sharma, V., & Viswanath, P.(2011). Information capacity of Energy harvesting. In Proceedings of the 2011 IEEE international symposium on information theory, (pp. 2363–2367). St. Petersburg, Russia, 31 July-5 Aug. 2011.Google Scholar
  30. 30.
    Zhang, S., & Seyedi, A. (2011). Analysis and design of energy harvesting wireless sensor networks with linear topology. In Proceedings of the IEEE international conference on communications (ICC), Kyoto, Japan, 5–9 June 2011.Google Scholar
  31. 31.
    Meshkati, F., Poor, H. V., & Schwartz, S. C. (2007). Energy-efficient resource allocation in wireless networks. IEEE Signal Processing Magazine, 24, 58–68.CrossRefGoogle Scholar
  32. 32.
    Tsuo, F. Y., Tan, H. P., Chew, Y. H., & Wei, H. Y. (2011). Energy-aware transmission control for wireless sensor networks powered by ambient energy harvesting: A game-theoretic approach. In Proceedings of the IEEE international conference on communications (ICC), Kyoto, Japan, 5–9 June 2011.Google Scholar
  33. 33.
    Altman, E., Fiems, D., Haddad, M., & Gaillard, J. (2012). Semi-dynamic hawk and dove game applied to power control. In Proceedings of the 31st annual IEEE international conference on computer communications (INFOCOM).Google Scholar
  34. 34.
    Haddad, M., Altman, E., Gaillard, J., & Fiems, D. (2012). A semi-dynamic evolutionary power control game. In Proceedings of networking 2012, lecture notes in computer science vol. 7290, (pp. 392–403).Google Scholar
  35. 35.
    Niyato, D., Rashid, M. M., & Bhargave, V. K. (2007). Wireless sensor networks with energy harvesting technologies: A game-theoretic approach to optimal energy management. IEEE Wireless Communications, 14, 90–96.CrossRefGoogle Scholar
  36. 36.
    Jornet, J. S., & Akyildiz, I. F. (2012). Joint energy harvesting and communication analysis for perpetual wireless nanosensor networks in the terahertz band. IEEE Transactions on Nanotechnology, 11, 570–580.CrossRefGoogle Scholar
  37. 37.
    Seyedi, A., & Sikdar, B. (2010). Performance modelling of transmission schedulers capable of energy harvesting. In Proceedings of the IEEE international conference on communications (ICC), Cape Town.Google Scholar
  38. 38.
    Seyedi, A., & Sikdar, B. (2010). Energy efficient transmission strategies for body sensor networks with energy harvesting. IEEE Transactions on Communications, 58(7), 2116–2126.CrossRefGoogle Scholar
  39. 39.
    Ventura, J., & Chowdhury, K. (2011). Markov modelling of energy harvesting body sensor networks. In Proceedings of PIMRC, (pp. 2168–2172). Toronto.Google Scholar
  40. 40.
    Ho, C. K., Khoa, P. D., & Ming, P. C. (2010). Markovian models for harvested energy in wireless communications. In Proceedings of the 10th international conference on computational science, Amsterdam (ICCS).Google Scholar
  41. 41.
    Lee, P., Eu, Z. A., Han, M., & Tan, H. (2011). Empirical modeling of a solar powered energy harvesting wireless sensor node for time-slotted operation. In Porceedings of the IEEE wireless communications and networking conference (WCNC), (pp. 179–184). Cancun.Google Scholar
  42. 42.
    Michelusi, N., Stamatiou, K., & Zorzi, M. (2013). Transmission policies for energy harvesting sensors with time-correlated energy supply. IEEE Transactions on Communications, 61(7), 2988–3001.CrossRefGoogle Scholar
  43. 43.
    Michelusi, N., Badia, L., Carli, R., Corradini, L., & Zorzi, M. (2013). Energy management policies for harvesting-based wireless sensor devices with battery degradation. IEEE Transactions on Communications, 61(12), 4934–4947.CrossRefGoogle Scholar
  44. 44.
    Michelusi, N., Badia, L., & Zorzi, M. (2014). Optimal transmission policies for energy harvesting devices with limited state-of-charge knowledge. IEEE Transactions on Communications, 62(11), 3969–3982.CrossRefGoogle Scholar
  45. 45.
    Ren, X., & Liang, W. (2012). Delay-tolerant data gathering in energy harvesting sensor networks with a mobile sink. In Proc eedings of the IEEE global communications conference (GLOBECOM), Anaheim, California.Google Scholar
  46. 46.
    Ren, X., & Liang, W. (2013). The use of a mobile sink for quality data collection in energy harvesting sensor networks. In IEEE wireless communications and networking conference. (pp. 1145–1150), Shanghai.Google Scholar
  47. 47.
    Ren, X., Liang, W., & Xu, W. (2015). Data collection maximization in renewable sensor networks via time-slot scheduling. IEEE Transactions on Computers, 64(7), 1870–1883.CrossRefGoogle Scholar
  48. 48.
    Mehrabi, A., & Kim, K. (2016). Maximizing data collection throughput on a path in energy harvesting sensor networks using a mobile sink. IEEE Transactions on Mobile Computing, 15(3), 690–704.CrossRefGoogle Scholar
  49. 49.
    Wittevrongel, S., & Bruneel, H. (1994). A heuristic analytic technique to calculate the cell loss ration in a leaky bucket with bursty input traffic. AEUE—International Journal of Electronics and Communications, 48(3), 162–169.Google Scholar
  50. 50.
    Wittevrongel, S., & Bruneel, H. (1996). Analytic study of the queueing performance and the departure process of a leaky bucket with bursty input traffic. AEUE—International Journal of Electronics and Communications, 50(1), 1–10.Google Scholar
  51. 51.
    De Cuypere, E., De Turck, K., & Fiems, D. (2013). Performance analysis of a kitting process as a paired queue. Mathematical Problems in Engineering, Article ID 843184. http://dx.doi.org/10.1155/2013/843184.
  52. 52.
    De Cuypere, E., & Fiems, D. (2011). Performance evaluation of a kitting process. In Proceedings of the 17th international conference on analytical and stochastic modelling techniques and applications, lecture notes in computer science, (p. 6751).Google Scholar
  53. 53.
    De Cuypere, E., De Turck, K., & Fiems, D. (2012). Performance analysis of a decoupling stock in a Make-to-Order system. In Proceedings of the 14th IFAC symposium on information control problems in manufacturing, Bucharest, Romenia.Google Scholar
  54. 54.
    De Cuypere, E., De Turck, K., & Fiems, D. (2012). Stochastic modelling of energy harvesting for low power sensor nodes. In Proceedings of the 7th international conference on queueing theory and network applications, Kyoto, Japan.Google Scholar
  55. 55.
    Valentini, R., Dang, N., Levorato, M., & Bozorgzadeh, E. (2015). Modeling and control battery aging in energy harvesting systems. In Proceedings of SmartGridComm, (pp. 515–520).Google Scholar
  56. 56.
    Gelenbe, E., & Ceran, E. T. (2016). Energy packet networks with energy harvesting. IEEE Access, 4, 1321–1331.CrossRefGoogle Scholar
  57. 57.
    Latouche, G., & Ramaswami, V. (1999). Introduction to matrix analytic methods in stochastic modeling. SIAM.Google Scholar
  58. 58.
    Latouche, G. (1981). Queues with paired customers. Journal of Applied Probability, 18, 684–696.CrossRefGoogle Scholar
  59. 59.
    Asmussen, S., & Glynn, P. W. (2007). Stochastic simulation: Algorithms and analysis. Berlin: Springer.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department TELINGhent UniversityGhentBelgium
  2. 2.L2SCentraleSupélecGif-sur-YvetteFrance

Personalised recommendations