Advertisement

Telecommunication Systems

, Volume 66, Issue 3, pp 533–558 | Cite as

Handover in LTE-advanced wireless networks: state of art and survey of decision algorithm

  • Rami Ahmad
  • Elankovan A. Sundararajan
  • Nor E. Othman
  • Mahamod Ismail
Article

Abstract

The increasing demand for mobile communication calls for improvements to network operating services in terms of capacity, coverage, and Quality of Services (QoS). Ensuring QoS is one of the challenges faced by wireless network operators, which include the provision of high mobility speeds, thus the implementation of a seamless and fast handover between network cells is a prominent issue that must be addressed, especially when fulfilling QoS prerequisites. Long Term Evolution (LTE)/LTE-Advance has met these demands of QoS through the use of a new Radio Access Network and distribution of Radio Resource Management including the handover decision technique to evolve NodeB instead of relying on centralized control. In this paper, we review the control plane structure of LTE/LTE-A and present a comprehensive discussion of handover procedures such as the phases, techniques, requirements, features, and challenges involved. According to the overview of the handover decision phase, we surveyed and classified the present handover decision algorithms for a LTE-A system-based technology in regard to the primary handover decision technique. For each class, we describe in detail the fundamental operations and decision parameters using representative algorithms. A summary of input parameters, techniques, and performance evaluation of the handover decision algorithms concludes this work.

Keywords

LTE/LTE-A Handover decision algorithm Access network Mobility management 

Notes

Acknowledgements

This work was partially supported by the High Impact Fund of National University of Malaysia (Malaysia; Grant code:DIP-2014-037).

References

  1. 1.
    3rd Generation Partnership Project. (2008). Evolved universal terrestrial radio access (E-UTRA); Physical channels and modulation (Release 8). 3GPP TS 136 211 (Vol. 8.4.0).Google Scholar
  2. 2.
    3rd Generation Partnership Project. (2011). Evolved universal terrestrial radio access (E-UTRA); Physical channels and modulation (Release 10). 3GPP TS 136 211 (Vol. 10.1.0).Google Scholar
  3. 3.
    Miyim, A. M., Ismail, M., & Nordin, R. (2014). Vertical handover solutions over LTE-advanced wireless networks: An overview. Wireless Personal Communications, 77(4), 3051–3079.CrossRefGoogle Scholar
  4. 4.
    Shayea, I., Ismail, M., & Nordin, R. (2012). Advanced handover techniques in LTE-Advanced system. In 2012 International conference on computer, communication and engineering ICCCE 2012, July (pp. 74–79).Google Scholar
  5. 5.
    Márquez-Barja, J., Calafate, C. T., Cano, J. C., & Manzoni, P. (2011). An overview of vertical handover techniques: Algorithms, protocols and tools. Computer Communications, 34(8), 985–997.CrossRefGoogle Scholar
  6. 6.
    Salman, H. A., Ibrahim, L. F., & Fayed, Z. (2014). Overview of LTE-advanced mobile network plan layout. In 2014 5th international conference on intelligent systems, modelling and simulation (pp. 585–590).Google Scholar
  7. 7.
    Gódor, G., Jakó, Z., Knapp, Á., & Imre, S. (2015). A survey of handover management in LTE-based multi-tier femtocell networks: Requirements, challenges and solutions. Computer Communications, 76(November), 17–41.Google Scholar
  8. 8.
    Zhou, Y., & Ai, B. (2014). Handover schemes and algorithms of high-speed mobile environment: A survey. Computer Communications, 47(April), 1–15.CrossRefGoogle Scholar
  9. 9.
    Yazıcı, V., Kozat, U., & Sunay, M. (2014). A new control plane for 5G network architecture with a case study on unified handoff, mobility, and routing management. IEEE Communications Magazine, 52(11), 76–85.CrossRefGoogle Scholar
  10. 10.
    Ratasuk, R., Mangalvedhe, N., & Ghosh, A. (2015). Overview of LTE enhancements for cellular IoT. In 2015 IEEE 26th annual international symposium on personal, indoor, and mobile radio communications (PIMRC) (pp. 2293–2297).Google Scholar
  11. 11.
    Hätty, B., Dreßler, H.-J., Kröner, H., Schnabl, G., Schopp, M., & Splett, A. (2016). Adaptive techniques in advanced 4G cellular wireless networks. EURASIP Journal on Advances in Signal Processing, 2016(1), 19.CrossRefGoogle Scholar
  12. 12.
    Tran, T.-T., Shin, Y., & Shin, O.-S. (2012). Overview of enabling technologies for 3GPP LTE-advanced. EURASIP Journal on Advances in Signal Processing, 2012(1), 54.CrossRefGoogle Scholar
  13. 13.
    IUT-R. (2008). Requirements related to technical performance for IMT-advanced radio interface (s). Report of ITU-R M.2134.Google Scholar
  14. 14.
    Akyildiz, I. F., Gutierrez-Estevez, D. M., & Reyes, E. C. (2010). The evolution to 4G cellular systems: LTE-Advanced. EURASIP Journal on Advances in Signal Processing, 3(4), 217–244.Google Scholar
  15. 15.
    Chen, S., Sun, S., Wang, Y., Xiao, G., & Tamrakar, R. (2015). A comprehensive survey of TDD-based mobile communication systems from TD-SCDMA 3G to TD-LTE(A) 4G and 5G directions. EURASIP Journal on Advances in Signal Processing, 12(2), 40–60.Google Scholar
  16. 16.
    Jimaa, S., & Alfadhl, Y. (2011). LTE-A an overview and future research areas. 2011 IEEE 7th International conference on wireless and mobile computing, networking and communications (pp. 395–399).Google Scholar
  17. 17.
    Shen, Z., Papasakellariou, A., Montojo, J., Gerstenberger, D., & Xu, F. (2012). Overview of 3GPP LTE-advanced carrier aggregation for 4G wireless communications. IEEE Communications Magazine, 50(2), 122–130.CrossRefGoogle Scholar
  18. 18.
    Kanchi, S., Sandilya, S., Bhosale, D., Pitkar, A., & Gondhalekar, M. (2013). Overview of LTE-A technology. In 2013 IEEE global high tech congress on electronics (Vol. 3, no. 4, pp. 195–200).Google Scholar
  19. 19.
    Lee, J., et al. (2012). Coordinated multipoint transmission and reception in LTE-advanced systems. IEEE Communications Magazine, 50(11), 44–50.CrossRefGoogle Scholar
  20. 20.
  21. 21.
    Chen, J., Yang, C., & Mai, Y. (2015). A novel smart forwarding scheme in LTE-advanced networks. IEEE Communications Magazine, 12(3), 120–131.Google Scholar
  22. 22.
    Yang, S. C., & Winter, P. (2015). LTE-advanced and IEEE 802.11ac. IEEE Communications Magazine, 32(4), 221–234.Google Scholar
  23. 23.
    Damnjanovic, A., et al. (2011). A survey on 3GPP heterogeneous networks. IEEE Wireless Communications, 18(3), 10–21.CrossRefGoogle Scholar
  24. 24.
    3rd Generation Partnership Project. (2010). Evolved universal terrestrial radio access (E-UTRA); Base station (BS) radio transmission and reception (Release 9).’ 3GPP TS 136 104 (Vol. 9.4.0).Google Scholar
  25. 25.
    3rd Generation Partnership Project. (2013). Evolved universal terrestrial radio access (E-UTRA) and evolved universal terrestrial radio access network (E-UTRAN); overall description; Stage 2 (Release 11). 3GPP TS 136 300 (Vol. 11.5.0).Google Scholar
  26. 26.
    Sipila, K., Jasberg, M., Laiho-Steffens, J., & Wacker, A. (1999). Soft handover gains in a fast power controlled WCDMA uplink. 1999 IEEE 49th vehicular technology conference (Cat. No. 99CH36363) (Vol. 2, pp. 1594–1598).Google Scholar
  27. 27.
    Chang, J., Li, Y., Feng, S., Wang, H., Sun, C., & Zhang, P. (2009). A fractional soft handover scheme for 3GPP LTE-advanced system. In 2009 IEEE international conference on communications workshops (pp. 1–5).Google Scholar
  28. 28.
    Kim, J., Lee, G., & In, H. P. (2014). Adaptive time-to-trigger scheme for optimizing LTE handover. IEEE Wireless Communications, 7(4), 35–44.Google Scholar
  29. 29.
    Zhang, H., Wen, X., Wang, B., Zheng, W., & Sun, Y. (2010). A novel handover mechanism between femtocell and macrocell for LTE based networks. In 2010 second international conference on communication software and networks (pp. 228–231).Google Scholar
  30. 30.
    Zheng, W., et al. (2013). Mobility robustness optimization in self-organizing LTE femtocell networks. IEEE Wireless Communications, 2013(1), 27.Google Scholar
  31. 31.
    Anas, M., Calabrese, F. D., Mogensen, P. E., Rosa, C., & Pedersen, K. I. (2007). Performance evaluation of received signal strength based hard handover for UTRAN LTE. IEEE vehicular technology conference (pp. 1046–1050).Google Scholar
  32. 32.
    Kurjenniemi, J., & Henttonen, T. (2008). Effect of measurement bandwidth to the accuracy of inter-frequency RSRP measurements in LTE. IEEE international symposium on personal, indoor and mobile radio communications PIMRC.Google Scholar
  33. 33.
    Han, J., & Wu, B. (2010). Handover in the 3GPP long term evolution (LTE) systems. 2010 Global Mobile Congress GMC’2010.Google Scholar
  34. 34.
    3rd Generation Partnership Project. (2012). LTE; Evolved universal terrestrial radio access (E-UTRA); radio resource control (RRC); protocol specification (Release 10). 3GPP TS 136 331 (Vol. 10.7.1, pp. 0–14).Google Scholar
  35. 35.
    Lin, Cheng-Chung. (2013). Handover mechanisms in 3GPP long term evolution (LTE). Sydeny: University of Technology.Google Scholar
  36. 36.
    3rd Generation Partnership Project. (2012). Telecommunication management; automatic neighbour relation (ANR) management; concepts and requirements (Release 11). 3GPP TS 132 511 (Vol. 11.2.0).Google Scholar
  37. 37.
    Shen, Y., Luo, T., & Win, M. Z. (2012). Neighboring cell search for LTE systems. IEEE Wireless Communications, 11(3), 908–919.CrossRefGoogle Scholar
  38. 38.
    Wanalertlak, W., Lee, B., Yu, C., Kim, M., Park, S. M., & Kim, W. T. (2011). Behavior-based mobility prediction for seamless handoffs in mobile wireless networks. IEEE Wireless Communications, 17(3), 645–658.Google Scholar
  39. 39.
    Watanabe, Y., Matsunaga, Y., Kobayashi, K., Sugahara, H., & Hamabe, K. (2011). Dynamic neighbor cell list management for handover optimization in LTE. IEEE vehicular technology conference.Google Scholar
  40. 40.
    Suleiman, K. E., Taha, A. E. M., & Hassanein, H. S. (2016). Handover-related self-optimization in femtocells: A survey and an interaction study. IEEE Wireless Communications, 73, 82–98.Google Scholar
  41. 41.
    Sesia, S., Toufik, I., & Baker, M. (2011). LTE—The UMTS long term evolution from theory to practice (2nd ed., Vol. 1). Chichester: Wiley.Google Scholar
  42. 42.
    Lopez-Perez, D., Guvenc, I., de la Roche, G., Kountouris, M., Quek, T., & Zhang, J. (2011). Enhanced intercell interference coordination challenges in heterogeneous networks IEEE Wirel. IEEE Wireless Communications, 18(3), 22–30.CrossRefGoogle Scholar
  43. 43.
    3rd Generation Partnership Project. (2012). Technical specification group radio access network; evolved universal terrestrial radio access (E-UTRA); mobility enhancements in heterogeneous networks (Release 11). 3GPP TR 36.839 (Vol. 11.0.0).Google Scholar
  44. 44.
    Isa, I. N. M., Dani Baba, M., Yusof, A. L., & Rahman, R. A. (2015). Handover parameter optimization for self-organizing LTE networks. In 2015 IEEE symposium on computer applications & industrial electronics (ISCAIE), 2015, September (pp. 1–6).Google Scholar
  45. 45.
    Davaasambuu, B., Yu, K., & Sato, T. (2015). Self-optimization of handover parameters for long-term evolution with dual wireless mobile relay nodes. IEEE Wireless Communications, 7(2), 196–213.Google Scholar
  46. 46.
    Wang, Y. H., Huang, G. R., & Tung, Y. C. (2014). A handover prediction mechanism based on LTE-A UE history information. 2014 International conference on computer, information and telecommunication systems CITS 2014.Google Scholar
  47. 47.
    Li , X.-W., & Wang, J. (2013). The optimized method of reducing unnecessary handover in LTE system. In 2013 third international conference on instrumentation, measurement, computer, communication and control (pp. 1224–1227).Google Scholar
  48. 48.
    Ghanem, K., Alradwan, H., Motermawy, A., & Ahmad, A. (2012). Reducing ping-pong handover effects in intra EUTRA networks. In Proceedings of 2012 8th international symposium on communication systems, networks and digital signal processing CSNDSP 2012 (pp. 1–5).Google Scholar
  49. 49.
    Lee, D.-W., Gil, G.-T., & Kim, D.-H. (2010). A cost-based adaptive handover hysteresis scheme to minimize the handover failure rate in 3GPP LTE system. EURASIP Journal on Wireless Communications and Networking, 2010(1), 750173. doi: 10.1155/2010/750173.CrossRefGoogle Scholar
  50. 50.
    Yang, F., Deng, H., Jiang, F., & Deng, X. (2015). Handover optimization algorithm in LTE high-speed railway environment. IEEE Wireless Communications, 84(2), 1577–1589.Google Scholar
  51. 51.
    Chen, X., Kim, M. J., Yoo, S. H., Park, N. Y., & Youn, H. Y. (2014). Efficient and prompt handover in LTE-based systems by predicting the target eNodeBs. 2014 International conference on cyber-enabled distributed computing and knowledge discovery (pp. 406–413).Google Scholar
  52. 52.
    Chang, F.-M., Wang, H.-L., Hu, S.-Y., & Kao, S.-J. (2013). An efficient handover mechanism by adopting direction prediction and adaptive time-to-trigger in LTE networks. In Computational science and its applications—Iccsa 2013, Pt V (Vol. 7975, pp. 270–280).Google Scholar
  53. 53.
    Fei, M., & Fan, P. (2012). Position-assisted fast handover schemes for LTE-advanced network under high mobility scenarios. IEEE Wireless Communications, 20(4), 268–273.Google Scholar
  54. 54.
    Balan, I., Sas, B., Jansen, T., Moerman, I., Spaey, K., & Demeester, P. (2011). An enhanced weighted performance-based handover parameter optimization algorithm for LTE networks. IEEE Wireless Communications, 2011(1), 1–11.Google Scholar
  55. 55.
    Jansen, T., Balan, I.,Turk, J., Moerman, I., & Kurner, T. (2010). Handover parameter optimization in LTE self-organizing networks. In 2010 IEEE 72nd vehicular technology conference—Fall, 2010, September (pp. 1–5)Google Scholar
  56. 56.
    Yilmaz, O. N. C., Hämäläinen, J., & Hämäläinen, S. (2013). Optimization of adaptive antenna system parameters in self-organizing LTE networks. IEEE Wireless Communications, 19(6), 1251–1267.Google Scholar
  57. 57.
    Mwanje, S. S., Schmelz, L. C., & Mitschele-Thiel, A. (2016). Cognitive cellular networks: A Q-learning framework for self-organizing networks. IEEE Wireless Communications, 13(1), 85–98.Google Scholar
  58. 58.
    Wang, H.-L., Kao, S.-J., Hsiao, C.-Y., & Chang, F.-M. (2014). A moving direction prediction-assisted handover scheme in LTE networks. IEEE Wireless Communications, 2014(1), 190.Google Scholar
  59. 59.
    Lin, C.-C., Sandrasegaran, K., Zhu, X., & Zhuliang, X. (2012). On the performance of capacity integrated CoMP handover algorithm in LTE-advanced. In 2012 18th Asia-Pacific conference on communications (APCC) (pp. 871–876).Google Scholar
  60. 60.
    Lin, C.-C., Sandrasegaran, K., & Reeves, S. (2012). Handover algorithm with joint processing in LTE-advanced. In 2012 9th international conference on electrical engineering/electronics, computer, telecommunications and information technology (pp. 1–4).Google Scholar
  61. 61.
    Boujelben, M., Ben Rejeb, S., & Tabbane, S. (2015). A novel mobility-based COMP handover algorithm for LTE-A/5G HetNets. In 2015 23rd international conference on software, telecommunications and computer networks (SoftCOM) (pp. 143–147).Google Scholar
  62. 62.
    Tao, M., Yuan, H., Hong, X., & Zhang, J. (2016). SmartHO: Mobility pattern recognition assisted intelligent handoff in wireless overlay networks. Soft Computer, 20(10), 4121–4130.CrossRefGoogle Scholar
  63. 63.
    Ge, H.,Wen, X., Zheng, W., Lu, Z., & Wang, B. (2009). A history-based handover prediction for LTE systems. In Proceedings of 1st international symposium on computer network and multimedia technology, CNMT 2009 (pp. 1–4).Google Scholar
  64. 64.
    Lei, P. R., Shen, T. J., Peng, W. C., & Su, I. J. (2011). Exploring spatial-temporal trajectory model for location prediction. Proceedings of IEEE International Wireless Communications, 1, 58–67.Google Scholar
  65. 65.
    Tu, H. M., Lin, J. S., Chang, T. S., & Ten Feng, K. (2012). Prediction-based handover schemes for relay-enhanced LTE-A systems. IEEE wireless communications networking conference WCNC (pp. 2879–2884).Google Scholar
  66. 66.
    Chen, J. Y., Mai, Y. T., & Yang, C. C. (2012). Handover enhancement in LTE-advanced relay networks. In Proceedings of 2012 international symposium on computer, consumer and control IS3C 2012 (pp. 224–227).Google Scholar
  67. 67.
    Nakano, A., & Saba, T. (2014). A handover scheme based on signal power of coordinated base stations for CoMP joint processing systems. In 2014 8th international conference on signal processing and communication systems (ICSPCS) (pp. 1–6).Google Scholar
  68. 68.
    Hansen, R., Wind, R., Jensen, C. S., & Thomsen, B. (2009). Seamless indoor/outdoor positioning handover for location-based services in streamspin. In Proceedings of IEEE international conference on mobile data management (pp. 267–272).Google Scholar
  69. 69.
    Chan Lee, J., Cho, S.-P., & Kim, H. (2005). Position based handover control method. In Computational science and its applications—Iccsa 2005, Pt 2 (Vol. 3481, pp. 781–788).Google Scholar
  70. 70.
    Hu, H., Zhang, J., Zheng, X., Yang, Y., & Wu, P. (2010). Self-configuration and self-optimization for LTE networks. IEEE Communications Magazine, 48(2), 94–100.CrossRefGoogle Scholar
  71. 71.
    Lateef, H. Y., Imran, A., Imran, M. A., Giupponi, L., & Dohler, M. (2015). LTE-advanced self-organizing network conflicts and coordination algorithms. IEEE Communications Magazine, 22(3), 108–117.CrossRefGoogle Scholar
  72. 72.
    Sinclair, N., Harle, D., Glover, I. A., Irvine, J., & Atkinson, R. C. (2013). An advanced SOM algorithm applied to handover management within lte. IEEE Communications Magazine, 62(5), 1883–1894.Google Scholar
  73. 73.
    Munoz, P., Barco, R., & Fortes, S. (2014). Conflict resolution between load balancing and handover optimization in LTE networks. IEEE Communications Magazine, 18(10), 1795–1798.Google Scholar
  74. 74.
    Zhang, H., Wen, X., Wang, B., Zheng, W., & Lu, Z. (2009). A novel self-optimizing handover mechanism for multi-service provisioning in LTE-advanced. ICRCCS 2009–2009 Int. IEEE Communications Magazine, 1, 221–224.Google Scholar
  75. 75.
    Su, D., Wen, X., Zhang, H., & Zheng, W. (2010). A self-optimizing mobility management scheme based on cell ID information in high velocity environment. IEEE Communications Magazine, 2010, 285–288.Google Scholar
  76. 76.
    Teyeb, O., Van Phan, V., Raaf, B., & Redana, S. (2009). Dynamic relaying in 3GPP LTE-advanced networks. EURASIP Journal on Wireless Communications and Networking, 2009(1), 731317. doi: 10.1155/2009/731317.CrossRefGoogle Scholar
  77. 77.
    Fall, K., & Varadhan, K. (2011). Ns notes and documents. The VINT Project, UC Berkeley, LBL, USC/ISI, and Xerox PARCGoogle Scholar
  78. 78.
    N. S, “NS-3.” [Online]. Available https://www.nsnam.org/.
  79. 79.
    Scalable Network Technologies. QualNet Network Simulator Software. Available in http://web.scalable-networks.com/qualnet-network-simulator-software.
  80. 80.
    Piro, G., Grieco, L. A., Boggia, G., Capozzi, F., & Camarda, P. (2011). Simulating LTE cellular systems? An open source framework. IEEE Transactions on Vehicular Technology, 60(2), 498–513.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Faculty of Information Science and Technology, Center for Software Technology and ManagementUniversity Kebangsaan MalaysiaSelangorMalaysia
  2. 2.Department of Electrical, Electronic and System EngineeringUniversity Kebangsaan MalaysiaSelangorMalaysia

Personalised recommendations