Telecommunication Systems

, Volume 66, Issue 2, pp 233–242 | Cite as

Quality of service aware traffic scheduling in wireless smart grid communication

  • Parya Hajimirzaee
  • Mohammad FathiEmail author
  • Nooruldeen Nasih Qader


The next generation electrical power grid, known as smart grid (SG), requires a communication infrastructure to gather generated data by smart sensors and household appliances. Depending on the quality of service (QoS) requirements, this data is classified into event-driven (ED) and fixed-scheduling (FS) traffics and is buffered in separated queues in smart meters. Due to the operational importance of ED traffic, it is time sensitive in which the packets should be transmitted within a given maximum latency. In this paper, considering QoS requirements of ED and FS traffics, we propose a two-stage wireless SG traffic scheduling model, which results in developing a SG traffic scheduling algorithm. In the first stage, delay requirements of ED traffic is satisfied by allocating the SG bandwidth to ED queues in smart meters. Then, in the second stage, the SG rest bandwidth is going to the FS traffic in smart meters considering maximizing a weighted utility measure. Numerical results demonstrate the effectiveness of the proposed model in terms of satisfying latency requirement and efficient bandwidth allocation.


Communication Quality of service Smart grid Smart meter Traffic scheduling 


  1. 1.
    Farhangi, H. (2010). The path of the smart grid. IEEE Power and Energy Magazine, 8(1), 18–28.CrossRefGoogle Scholar
  2. 2.
    Ho, Q.-D., Gao, Y., & Le-Ngoc, T. (2013). Challenges and research opportunities in wireless communication networks for smart grid. IEEE Wireless Communications, 20(3), 89–95.CrossRefGoogle Scholar
  3. 3.
    Bevrani, H., Watanabe, M., & Mitani, Y. (2014). Power system monitoring and control. Hoboken: IEEE-Wiley Press.CrossRefGoogle Scholar
  4. 4.
    Yan, Y., Qian, Y., Sharif, H., & Tipper, D. (2013). A survey on smart grid communication infrastructures: Motivations, requirements and challenges. IEEE Communications Surveys Tutorials, 15(1), 5–20. First.CrossRefGoogle Scholar
  5. 5.
    Gungor, V., Sahin, D., Kocak, T., Ergut, S., Buccella, C., Cecati, C., et al. (2011). Smart grid technologies: Communication technologies and standards. IEEE Transactions on Industrial Informatics, 7(4), 529–539.CrossRefGoogle Scholar
  6. 6.
    Ma, R., Chen, H.-H., Huang, Y.-R., & Meng, W. (2013). Smart grid communication: Its challenges and opportunities. IEEE Transactions on Smart Grid, 4(1), 36–46.CrossRefGoogle Scholar
  7. 7.
    Liang, H., Choi, B. J., Abdrabou, A., Zhuang, W., & Shen, X. (2012). Decentralized economic dispatch in microgrids via heterogeneous wireless networks. IEEE Journal on Selected Areas in Communications, 30(6), 1061–1074.CrossRefGoogle Scholar
  8. 8.
    Fathi, M., & Bevrani, H. (2013). Statistical cooperative power dispatching in interconnected microgrids. IEEE Transactions on Sustainable Energy, 4(3), 586–593.CrossRefGoogle Scholar
  9. 9.
    Niyato, D., Wang, P., & Hossain, E. (2012). Reliability analysis and redundancy design of smart grid wireless communications system for demand side management. IEEE Wireless Communications, 19(3), 38–46.CrossRefGoogle Scholar
  10. 10.
    Huang, J., Wang, H., Qian, Y., & Wang, C. (2013). Priority-based traffic scheduling and utility optimization for cognitive radio communication infrastructure-based smart grid. IEEE Transactions on Smart Grid, 4(1), 78–86.CrossRefGoogle Scholar
  11. 11.
    Gharavi, H., & Xu, C. (2012). Traffic scheduling technique for smart grid advanced metering applications. IEEE Transactions on Communications, 60(6), 1646–1658.CrossRefGoogle Scholar
  12. 12.
    Al-Khatib, O., Hardjawana, W. & Vucetic, B. (2014). Queuing analysis for smart grid communications in wireless access networks. In Proceedings IEEE International Conference on Smart Grid Communications (SmartGridComm), (pp. 374–379).Google Scholar
  13. 13.
    Al-Khatib, O., Hardjawana, W., & Vucetic, B. (2014). Traffic modeling and optimization in public and private wireless access networks for smart grids. IEEE Transactions on Smart Grid, 5(4), 1949–1960.CrossRefGoogle Scholar
  14. 14.
    Fathi, M. (2015). A spectrum allocation scheme between smart grid communication and neighbor communication networks. IEEE Systems Journal, PP(99), 1–8.Google Scholar
  15. 15.
    Yu, R., Zhang, Y., Gjessing, S., Yuen, C., Xie, S., & Guizani, M. (2011). Cognitive radio based hierarchical communications infrastructure for smart grid. IEEE Network, 25(5), 6–14.CrossRefGoogle Scholar
  16. 16.
    Wang, H., Qian, Y., & Sharif, H. (2013). Multimedia communications over cognitive radio networks for smart grid applications. IEEE Wireless Communications, 20(4), 125–132.CrossRefGoogle Scholar
  17. 17.
    Zhang, H., Chu, X., Ma, W., Zheng, X., & Wen, Weiand. (2012). Resource allocation with interference mitigation in ofdma femtocells for co-channel deploymenta. EURASIP Journal on Wireless Communications and Networking, 2012(1), 289.CrossRefGoogle Scholar
  18. 18.
    Zhang, H., Jiang, C., Beaulieu, N. C., Chu, X., Wen, X., & Tao, M. (2014). Resource allocation in spectrum-sharing ofdma femtocells with heterogeneous services. IEEE Transactions on Communications, 62(7), 2366–2377.CrossRefGoogle Scholar
  19. 19.
    Zhang, H., Jiang, C., Mao, X., & Chen, H. H. (2016). Interference-limited resource optimization in cognitive femtocells with fairness and imperfect spectrum sensing. IEEE Transactions on Vehicular Technology, 65(3), 1761–1771.CrossRefGoogle Scholar
  20. 20.
    Li, Q., Feng, Z., Li, W., Gulliver, T. A., & Zhang, P. (2014). Joint spatial and temporal spectrum sharing for demand response management in cognitive radio enabled smart grid. IEEE Transactions on Smart Grid, 5(4), 1993–2001.CrossRefGoogle Scholar
  21. 21.
    Yu, R., Zhang, C., Zhang, X., Zhou, L., & Yang, K. (2014). Hybrid spectrum access in cognitive-radio-based smart-grid communications systems. IEEE Systems Journal, 8(2), 577–587.CrossRefGoogle Scholar
  22. 22.
    Stolyar, A. L. (2005). Maximizing queuing network utility subject to stability: Greedy primalcdual algorithm. Queueing Systems, 50(4), 401–457.CrossRefGoogle Scholar
  23. 23.
    Fathi, M., & Taheri, H. (2010). Utility-based resource allocation in orthogonal frequency division multiple access networks. IET Communications, 4(12), 1463–1470.CrossRefGoogle Scholar
  24. 24.
    Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  25. 25.
    Grant, M. & Boyd, S. (2014) CVX: Matlab software for disciplined convex programming, version 2.1.
  26. 26.
    Solo, V., & Kong, X. (1995). Adaptive signal processing algorithms: Stability and performance. Upper Saddle River: Prentice Hall.Google Scholar
  27. 27.
    Berteskas, D. (1999). Nonlinear programming. Boston: Athena Scientific.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Parya Hajimirzaee
    • 1
  • Mohammad Fathi
    • 1
    Email author
  • Nooruldeen Nasih Qader
    • 2
  1. 1.Department of Electrical EngineeringUniversity of KurdistanSanandajIran
  2. 2.Department of Computer ScienceUniversity of Human DevelopmentSulaymaniyahIraq

Personalised recommendations