Advertisement

Telecommunication Systems

, Volume 64, Issue 3, pp 429–438 | Cite as

RETRACTED ARTICLE: Improved fast handover method for multiple node by using mobile nodes guide

  • Radhwan M. AbdullahEmail author
  • Zuriati Ahmad Zukarnain
  • Rizwan Iqbal
Article

Abstract

The fast mobile internet protocol version 6 (FMIPv6) was suggested as a fast handover mechanism over the mobile wireless Internets in order to reduce the handover latency of a mobile node (MN). However, FMIPv6 was originally designed to deal with single MN’s. In mobile wireless Internet, a multiple MNs may do a handover at the same time as a consequence of its movement from one network to another new one. This will therefore lead to the bandwidth waste and low handover performance. This paper intends to propose a multiple handover-based mobile node (MHB-MN) control method and an enhanced FMIPv6 mechanism in order to resolve the abovementioned problem. The proposal of such an MHB-MN method aims at having one mobile node work as a guide for a group of neighboring MNs. This means that the guide of MN prepares itself for a handover before actually taking the initial steps of the actual handover operation. Based on obtained results, it is plainly observable that by MHB-MN method, the handover initiation time, handover latency and handover control messages can be reduced compared to those of FMIPv6. Furthermore, the contention of the wireless channel for multiple MNs can be improved by the use of fewer control messages. Finally, the paper introduces an analytical model to show that by enabling the MHB-MN method and enhancing the FMIPv6 method, a multiple of nodes can perform rapid handover processes with low handover latency compared to that of the FMIPv6 technique.

Keywords

Fast mobile IPv6 Mobile IPv6 Handover operation Mobility management Performance analysis 

References

  1. 1.
    Johnson, D., Perkins, C., & Arkko, J. (June 2004). Mobility support in IPv6 RFC 3775. Nokia Research Center RFC, 3775.Google Scholar
  2. 2.
    Ma, W., & Fang, Y. (2004). Dynamic hierarchical mobility management strategy for mobile IP networks. IEEE Journal of Selected Areas in Communications, 22, 664–676.CrossRefGoogle Scholar
  3. 3.
    Mohanty, S., & Akyildiz, I. F. (2007). Performance analysis of handoff techniques based on mobile IP. IEEE Transactions on Mobile Computing, 6, 731–747.CrossRefGoogle Scholar
  4. 4.
    Chen, W., & Li, S. (2013). Client-based internet protocol version 4-internet protocol version 6 translation mechanism for session initiation protocol multimedia services in next generation networks. IET Networks, 2, 115–123.CrossRefGoogle Scholar
  5. 5.
    Yen, Y.-S., Chen, L.-Y., Chi, T.-Y., & Chao, H.-C. (2013). A novel predictive scheduling handover on mobile IPv6. Telecommunication System, 52, 461–473.Google Scholar
  6. 6.
    Ramani, I., & Savage, S. (2005). SyncScan: Practical fast handoff for 802.11 infrastructure networks. In: Proceedings of the IEEE International Conference on Computer Communications (INFOCOM) (Vol. 1, pp. 675–684)Google Scholar
  7. 7.
    Pack, S., Choi, J., Kwon, T., & Choi, Y. (2007). A time-adaptive vertical handoff decision scheme in wireless overlay networks. In: Fast Handoff Support in IEEE 802.11 Wireless Networks, IEEE Commun. Surv. (Vol. 9, p. 212).Google Scholar
  8. 8.
    Chen, X., & Qiao, D. (2010). HaND: Fast handoff with null dwell time for IEEE 802.11 networks. In: Proceedings of the IEEE INFOCOM (p. 19)Google Scholar
  9. 9.
    Soliman, H., Castelluccia, C., EL-Malki, K., & Bellier, K. (October 2008). Hierarchical MIPv6 (HMIPv6) mobility management. In: IETF RFC 5380.Google Scholar
  10. 10.
    Jaron, A., Pangalos, P., Mihailovic, A., & Aghvami, A. H. (2012). Proactive autonomic load uniformisation with mobility management for wireless internet protocol (IP) access networks. IET Networks, 1, 229–238.CrossRefGoogle Scholar
  11. 11.
    Yan, Z.-W., Zhou, H. C., Zhang, H. K., Zhang, S., & Chao, H. C. (2010). Design and implementation of PMIPv6 based multihoming for make-before-break handover. Journal of Internet Technology, 11, 110.Google Scholar
  12. 12.
    Lee, J.-H., Ernst, T., Deng, D. J., & Chao., H. C. (2011). Improved PMIPv6 handover procedure for consumer multicast traffic. IET Communication, 5, 2149–2156.CrossRefGoogle Scholar
  13. 13.
    Lili, W., Shuai, G., Huachun, Z., Hongke, Z., & Han-Chieh, C. (2013). A novel prefix-aggregation based distributed management scheme for PMIPv6. Journal of Internet Technology, 14, 723–740.Google Scholar
  14. 14.
    Koodli, R. (2009). Mobile IPv6 Fast Handovers. Network Working Group, RFC, 5568.Google Scholar
  15. 15.
    Radhwan, M. A., Azizol, A., Nor AsilahWati, A., Mohamed, O., & Shamala, S. (2013). The rapid vertical handover for efficient IPv6 mobility support in heterogeneous wireless networks. Arabian Journal for Science and Engineering, 39, 851–860.Google Scholar
  16. 16.
    Dimopoulou, L., Leoleis, G., & Venieris, I. S. (2005). Fast handover support in a WLAN environment: Challenges and perspectives. IEEE Networks, 19, 14–20.CrossRefGoogle Scholar
  17. 17.
    Huang, C. M., Chiang, M. S., & Hsu, T. H. (2008). A reactive tunneling (RT) scheme to improve handover latency over the mobile network environment. In: Proceedings of the 24th IEEE International Conference on Advanced Information Networking and Applications (AINA) (pp. 277–282).Google Scholar
  18. 18.
    Alnas, M., Awan, I., & Holton, D. R. W. (2010). Performance evaluation of fast handover in mobile ipv6 based on link-layer information. Journal of Systems and Software, 85, 1644–1650.CrossRefGoogle Scholar
  19. 19.
    Li, C.-S., & Chao., H.-C. (2012). IPv6 auto-configuration VANET cross layer design based on IEEE 1609. IET Networks, 1, 199–206.CrossRefGoogle Scholar
  20. 20.
    Devarapalli, V., Wakikawa, R., Petrescu, A., & Thubert, P. (2005). Network mobility (NEMO) basic support protocol. In: Internet Engineering Task Force (IETF), RFC-3963.Google Scholar
  21. 21.
    Calderon, M., Bernardos, C. J., Bagnulo, M., Soto, I., & de la Oliva, A. (2006). esign and experimental evaluation of a route optimization solution for NEMO. IEEE Journal on Selected Areas in Communications, 24, 1702–1716.CrossRefGoogle Scholar
  22. 22.
    Petander, H., Perera, E., Lan, K.-C., & Seneviratne, A. (2006). Measuring and improving the performance of network mobility management in IPv6 networks. IEEE Journal on Selected Areas in Communications, 24, 1671–1681.CrossRefGoogle Scholar
  23. 23.
    Chang, I. C., & Chou, C. H. (2009). HCoP-B: A hierarchical care-of prefix with BUT scheme for nested mobile networks. IEEE Transactions on Vehicular Technology, 58, 2942–2965.CrossRefGoogle Scholar
  24. 24.
    Pack, S., Kwon, T., Choi, Y., & Paik, E. (2009). An adaptive network mobility support protocol in hierarchical mobile IPv6 networks. IEEE Transactions on Vehicular Technology, 58, 3627–3639.CrossRefGoogle Scholar
  25. 25.
    Huang, C. M., Lee, C. H., & Zheng, J. R. (2009). A novel SIP-based route optimization for network mobility. IEEE Journal on Selected Areas in Communications, 24, 1682–1691.CrossRefGoogle Scholar
  26. 26.
    Lim, H. J., Kim, M., Lee, J. H., & Chung, T. M. (2009). Route optimization in nested NEMO: Classification, evaluation, and analysis from NEMO fringe stub perspective. IEEE Transactions on Mobile Computing, 8, 1554–1572.CrossRefGoogle Scholar
  27. 27.
    Shahriar, A. Z. M., Atiquzzaman, M., & Ivancic, W. (2010). Route optimization in network mobility: Solutions, classification, comparison, and future research directions. IEEE Communications Surveys & Tutorials, 12, 24–38.CrossRefGoogle Scholar
  28. 28.
    Moore, N. (2006). Optimistic duplicate address detection. In: IETF RFC, 4429.Google Scholar
  29. 29.
    Caldeira, J. M., Rodrigues, J. J., & Lorenz, P. (2015). MAC layer handover mechanism for continuous communication support in healthcare mobile wireless sensor networks. Telecommunication Systems, 60, 119–132.CrossRefGoogle Scholar
  30. 30.
    Joo, M. L. P., Joel, J. P. C., & Pascal, L. (2013). Intra-mobility support solutions for healthcare wireless sensor networks—Handover issues. IEEE Sensors Journal, 13, 4339–4348.CrossRefGoogle Scholar
  31. 31.
    Silva, R., Jorge, S., & Fernando, B. (2012). A proposal for proxy-based mobility in WSNs. Computer Communications, 35, 1200–1216.CrossRefGoogle Scholar
  32. 32.
    Oliveira, M. L., de Sousa, F., & Rodrigues, J. P. C. (2011). Routing and mobility approaches in IPv6 over LoWPAN mesh network. International Journal of Communication Systems, 24, 1445–1466.CrossRefGoogle Scholar
  33. 33.
    Silva, R., Zinonos, Z., Silva J., & Vassiliou, V. (2011). Mobility in WSNs for critical applications. In: IEEE Computers and Communications (pp. 451–456)Google Scholar
  34. 34.
    Thomas, C. S., & Matthias, W. (2005). Predictive versus reactive analysis of handover performance and its implications on IPv6 and multicast mobility. Telecommunication Systems, 30, 123–142.CrossRefGoogle Scholar
  35. 35.
    Ruiz, P., & Bouvry, P. (2010). Enhanced distance based broadcasting protocol with reduced energy consumption. In: Proceeding of International Conference on High Performance Computing and Simulation (HPCS) (pp. 249–258)Google Scholar
  36. 36.
    Tseng, Y. C., Ni, S. Y., Chen, Y. S., & Sheu, J. P. (2002). The broadcast storm problem in a mobile ad hoc network. Wireless Network, 8, 153–167.CrossRefGoogle Scholar
  37. 37.

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Radhwan M. Abdullah
    • 1
    Email author
  • Zuriati Ahmad Zukarnain
    • 1
  • Rizwan Iqbal
    • 1
  1. 1.Faculty of Computer Science and Information TechnologyUniversity Putra Malaysia, UPMSerdangMalaysia

Personalised recommendations