Advertisement

Telecommunication Systems

, Volume 62, Issue 1, pp 15–30 | Cite as

A survey on position-based routing for vehicular ad hoc networks

  • Jianqi Liu
  • Jiafu WanEmail author
  • Qinruo Wang
  • Pan Deng
  • Keliang Zhou
  • Yupeng Qiao
Article

Abstract

Position-based routing is considered to be a very promising routing strategy for communication within vehicular ad hoc networks (VANETs), due to the fact that vehicular nodes can obtain position information from onboard global positioning system receivers and acquire global road layout information from an onboard digital map. Position-based routing protocols, which are based mostly on greedy forwarding, are well-suited to the highly dynamic and rapid-changing network topology of VANETs. In this paper, we outline the background and the latest development in VANETs and survey the state-of-the-art routing protocols previously used in VANETs. We present the pros and cons for each routing protocol, and make a detailed comparison. We also discuss open issues, challenges and future research directions. It is observed that a hybrid routing protocol is the best choice for VANETs in both urban and highway environments.

Keywords

VANET Position-based routing Forwarding strategy  Intelligent transportation systems Internet of vehicle 

Notes

Acknowledgments

The authors would like to thank the Natural Science Foundation of Guangdong Province, China (No. 9151009001000021), the National Natural Science Foundation of China (Nos. 61262013, 61363011, 61100066, 61104219), the Opening Fund of Guangdong Province Key Laboratory of Precision Equipment and Manufacturing Technology (No. PEMT1303), the Strategic Emerging Industry Project of Guangdong Province (No. 2012A010702004), the High-level Talent Project for Universities, Guangdong Province, China (No. 431, YueCaiJiao 2011), the Foundation for Distinguished Young Talents in Higher Education of Guangdong Province (No. LYM11010), and 2013 Higher Vocational Education Teaching Reform Project of Guangdong Province (No. 20130301011) for their support in this research.

References

  1. 1.
    Wan, J., Yan, H., Suo, H., & Li, F. (2011). Advances in cyber-physical systems research. KSII Transactions on Internet and Information Systems, 5(11), 1891–1908.CrossRefGoogle Scholar
  2. 2.
    Qiu, M., Gao, W., Chen, M., Niu, J.-W., & Zhang, L. (2011). Energy efficient security algorithm for power grid wide area monitoring system. IEEE Transactions on Smart Grid, 2(4), 715–723.CrossRefGoogle Scholar
  3. 3.
    Li, F., & Wang, Y. (2007). Routing in vehicular ad hoc networks: A survey. IEEE Vehicular Technology Magazine, 2(2), 12–22.CrossRefGoogle Scholar
  4. 4.
    Zhang, D., Huang, H., Zhou, J., Xia, F., & Chen, Z. (2013). Detecting hot road mobility of vehicular Ad Hoc networks. Mobile Networks and Applications, 18(6), 803–813.CrossRefGoogle Scholar
  5. 5.
    Wan, J., Yan, H., Li, D., Zhou, K., & Zeng, L. (2013). Cyber-physical systems for optimal energy management scheme of autonomous electric vehicle. The Computer Journal, 56(8), 947–956.CrossRefGoogle Scholar
  6. 6.
    Lin, K., Chen, M., Zeadally, S., & Rodrigues, J. J. (2012). Balancing energy consumption with mobile agents in wireless sensor networks. Future Generation Computer Systems, 28(2), 446–456.Google Scholar
  7. 7.
    Zhang, D., Yang, Z., Raychoudhury, V., Chen, Z., & Lloret, J. (2013). An energy-efficient routing protocol using movement trends in vehicular ad hoc networks. The Computer Journal, 1–9.Google Scholar
  8. 8.
    Skraba, P., Aghajan, H., & Bahai, A. (2004). Distributed passive routing decisions in mobile ad-hoc networks. In 2004 IEEE 60th vehicular technology conference, 2004. VTC2004-Fall, 26–29 Sept. 2004 (Vol. 4, pp. 2814–2818). doi: 10.1109/vetecf.2004.1400572.
  9. 9.
    Bilal, S. M., Bernardos, C. J., & Guerrero, C. (2012). Position based routing in vehicular networks: A survey. Journal of Network and Computer Applications, 36(2), 685–697. doi: 10.1016/j.jnca.2012.12.023.CrossRefGoogle Scholar
  10. 10.
    Ding, Z., & Leung, K. K. (2011). Cross-layer routing using cooperative transmission in vehicular ad-hoc networks. IEEE Journal on Selected Areas in Communications, 29(3), 571–581.CrossRefGoogle Scholar
  11. 11.
    Goonewardene, R., Ali, F., & Stipidis, E. (2009). Robust mobility adaptive clustering scheme with support for geographic routing for vehicular ad hoc networks. IET Intelligent Transport Systems, 3(2), 148–158.CrossRefGoogle Scholar
  12. 12.
    Huang, X., & Fang, Y. (2009). Performance study of node-disjoint multipath routing in vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 58(4), 1942–1950.CrossRefGoogle Scholar
  13. 13.
    Jerbi, M., Senouci, S.-M., Rasheed, T., & Ghamri-Doudane, Y. (2009). Towards efficient geographic routing in urban vehicular networks. IEEE Transactions on Vehicular Technology, 58(9), 5048–5059.CrossRefGoogle Scholar
  14. 14.
    Karagiannis, G., Altintas, O., Ekici, E., Heijenk, G., Jarupan, B., Lin, K., et al. (2011). Vehicular networking: A survey and tutorial on requirements, architectures, challenges, standards and solutions. IEEE Communications Surveys & Tutorials, 13(4), 584–616.CrossRefGoogle Scholar
  15. 15.
    Mershad, K., Artail, H., & Gerla, M. (2012). ROAMER: Roadside units as message routers in VANETs. Ad Hoc Networks, 10(3), 479–496.CrossRefGoogle Scholar
  16. 16.
    Mershad, K., Artail, H., & Gerla, M. (2012). We can deliver messages to far vehicles. IEEE Transactions on Intelligent Transportation Systems, 13(3), 1099–1115.CrossRefGoogle Scholar
  17. 17.
    Nzouonta, J., Rajgure, N., Wang, G., & Borcea, C. (2009). VANET routing on city roads using real-time vehicular traffic information. IEEE Transactions on Vehicular Technology, 58(7), 3609–3626.CrossRefGoogle Scholar
  18. 18.
    Saleet, H., Langar, R., Naik, K., Boutaba, R., Nayak, A., & Goel, N. (2011). Intersection-based geographical routing protocol for VANETs: A proposal and analysis. IEEE Transactions on Vehicular Technology, 60(9), 4560–4574.CrossRefGoogle Scholar
  19. 19.
    Shafiee, K., & Leung, V. (2011). Connectivity-aware minimum-delay geographic routing with vehicle tracking in VANETs. Ad Hoc Networks, 9(2), 131–141.CrossRefGoogle Scholar
  20. 20.
    Sofra, N., Gkelias, A., & Leung, K. K. (2011). Route construction for long lifetime in VANETs. IEEE Transactions on Vehicular Technology, 60(7), 3450–3461.CrossRefGoogle Scholar
  21. 21.
    Taleb, T., Sakhaee, E., Jamalipour, A., Hashimoto, K., Kato, N., & Nemoto, Y. (2007). A stable routing protocol to support ITS services in VANET networks. IEEE Transactions on Vehicular Technology, 56(6), 3337–3347.CrossRefGoogle Scholar
  22. 22.
    Thati, A. S. (2013). A new scalable hybrid routing protocol for VANETS. International Journal of Engineering, 2(11).Google Scholar
  23. 23.
    Wang, W., Xie, F., & Chatterjee, M. (2009). Small-scale and large-scale routing in vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 58(9), 5200–5213.CrossRefGoogle Scholar
  24. 24.
    Wu, C., Ohzahata, S., & Kato, T. (2013). Flexible, portable and practicable solution for routing in VANETs: A fuzzy constraint Q-learning approach. IEEE Transactions on Vehicular Technology, 62(9), 4251–4263.CrossRefGoogle Scholar
  25. 25.
    Xiang, Y., Liu, Z., Liu, R., Sun, W., & Wang, W. (2013). GeoSVR: A map-based stateless VANET routing. Ad Hoc Networks, 11(7), 2125–2135. doi: 10.1016/j.adhoc.2012.02.015.CrossRefGoogle Scholar
  26. 26.
    Yang, Q., Lim, A., Li, S., Fang, J., & Agrawal, P. (2010). ACAR: Adaptive connectivity aware routing for vehicular ad hoc networks in city scenarios. Mobile Networks and Applications, 15(1), 36–60.CrossRefGoogle Scholar
  27. 27.
    Perkins, C. E., & Bhagwat, P. (1994). Highly dynamic destination-sequenced distance-vector routing (DSDV) for mobile computers. In ACM SIGCOMM Computer Communication Review (Vol. 24, pp. 234–244). ACM.Google Scholar
  28. 28.
    Perkins, C., Belding-Royer, E., & Das, S. (2003). Ad hoc on demand distance vector (AODV) routing (RFC 3561). IETF MANET Working Group (August. 2003).Google Scholar
  29. 29.
    Dhurandher, S., Misra, S., Obaidat, M., Gupta, M., Diwakar, K., & Gupta, P. (2010). Efficient angular routing protocol for inter-vehicular communication in vehicular ad hoc networks. IET Communications, 4(7), 826–836.CrossRefGoogle Scholar
  30. 30.
    Namboodiri, V., Agarwal, M., & Gao, L. (2004). A study on the feasibility of mobile gateways for vehicular ad-hoc networks. In Proceedings of the 1st ACM international workshop on vehicular ad hoc networks, (pp. 66–75). ACM.Google Scholar
  31. 31.
    Naumov, V., Baumann, R., & Gross, T. (2006). An evaluation of inter-vehicle ad hoc networks based on realistic vehicular traces. In Proceedings of the 7th ACM international symposium on Mobile ad hoc networking and computing (pp. 108–119). ACM.Google Scholar
  32. 32.
    Lochert, C., Mauve, M., Füßler, H., & Hartenstein, H. (2005). Geographic routing in city scenarios. ACM SIGMOBILE Mobile Computing and Communications Review, 9(1), 69–72.CrossRefGoogle Scholar
  33. 33.
    Karp, B., & Kung, H.-T. (2000). GPSR: Greedy perimeter stateless routing for wireless networks. In Proceedings of the 6th annual international conference on Mobile computing and networking, (pp. 243–254). ACM.Google Scholar
  34. 34.
    Giudici, F., & Pagani, E. (2005). Spatial and traffic-aware routing (STAR) for vehicular systems. In High performance computing and communications (pp. 77–86). Springer.Google Scholar
  35. 35.
    Jerbi, M., Meraihi, R., Senouci, S.-M., & Ghamri-Doudane, Y. (2006). GyTAR: Improved greedy traffic aware routing protocol for vehicular ad hoc networks in city environments. In Proceedings of the 3rd international workshop on Vehicular ad hoc networks (pp. 88–89). ACM.Google Scholar
  36. 36.
    Blum, J., Eskandarian, A., & Hoffman, L. (2003). Mobility management in IVC networks. In Proceedings of 2003 IEEE Intelligent Vehicles Symposium (pp. 150–155). IEEE.Google Scholar
  37. 37.
    Santos, R., Edwards, R., & Edwards, A. (2004). Cluster-based location routing algorithm for inter-vehicle communication. In 2004 IEEE 60th Vehicular Technology Conference (Vol. 2, pp. 914–918). IEEE.Google Scholar
  38. 38.
    Korkmaz, G., Ekici, E., Özgüner, F., & Özgüner, Ü. (2004). Urban multi-hop broadcast protocol for inter-vehicle communication systems. In Proceedings of the 1st ACM international workshop on vehicular ad hoc networks (pp. 76–85). ACM.Google Scholar
  39. 39.
    Osafune, T., Lin, L., & Lenardi, M. (2006). Multi-hop vehicular broadcast (MHVB). In 2006 6th international conference on ITS telecommunications (pp. 757–760). IEEE.Google Scholar
  40. 40.
    Mariyasagayam, M., Osafune, T., & Lenardi, M. (2007). Enhanced multi-hop vehicular broadcast (MHVB) for active safety applications. In The 7th international conference on ITS telecommunications (pp. 1–6). IEEE.Google Scholar
  41. 41.
    Suriyapaibonwattana, K., & Pomavalai, C. (2008). An effective safety alert broadcast algorithm for VANET. In International symposium on communications and information technologies (pp. 247–250). IEEE.Google Scholar
  42. 42.
    Adler, C., Eichler, S., Kosch, T., Schroth, C., & Strassberger, M. (2006). Self-organized and context-adaptive information diffusion in vehicular ad hoc networks. In the 3rd international symposium on wireless communication systems (ISWCS’06) (pp. 307–311). IEEE.Google Scholar
  43. 43.
    Liu, J., Wang, Q., Wan, J., Xiong, J., & Zeng, B. (2013). Towards key issues of disaster aid based on wireless body area networks. KSII Transactions on Internet and Information Systems, 7(5), 1014–1035.CrossRefGoogle Scholar
  44. 44.
    Chen, M., Ma, Y., Ullah, S., Cai, W., & Song, E. (2013). ROCHAS: Robotics and cloud-assisted healthcare system for empty nester. In Proceedings of the 8th international conference on body area networks (pp. 217–220). ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering).Google Scholar
  45. 45.
    Chen, M., Vasilakos, A. V., & Grace, D. (2012). Advances in green mobile networks. Mobile Networks and Applications, 17(1), 1–3.Google Scholar
  46. 46.
    Wan, J., Zhang, D., Sun, Y., Lin, K., Zou, C., & Cai, H. (2014). VCMIA: A novel architecture for integrating vehicular cyber-physical systems and mobile cloud computing. Mobile Networks and Applications, 19(2), 153–160.CrossRefGoogle Scholar
  47. 47.
    Wan, J., Chen, M., Xia, F., Di, L., & Zhou, K. (2013). From machine-to-machine communications towards cyber-physical systems. Computer Science and Information Systems, 10(3), 1105–1128.CrossRefGoogle Scholar
  48. 48.
    Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Mobile Networks and Applications, 1–39.Google Scholar
  49. 49.
    Trial-Use Standard for Wireless Access in Vehicular Environments (WAVE)—Resource Manager. (2006). IEEE Std 1609.1-2006 (pp. 1–71). doi: 10.1109/ieeestd.2006.246485.
  50. 50.
    IEEE Draft Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management Messages. (2012). IEEE P1609.2/D12, January 2012, 1–266.Google Scholar
  51. 51.
    IEEE Trial-Use Standard for Wireless Access in Vehicular Environments (WAVE)—Networking Services (2007). IEEE Std 1609.3-2007, 1–99. doi: 10.1109/ieeestd.2007.353212.
  52. 52.
    IEEE Standard for Wireless Access in Vehicular Environments (WAVE)-Multi-channel Operation. (2011). IEEE Std 1609.4-2010 (Revision of IEEE Std 1609.4-2006), 1–89. doi: 10.1109/ieeestd.2011.5712769.
  53. 53.
    IEEE Standard for Wireless Access in Vehicular Environments (WAVE)-Over-the-Air Electronic Payment Data Exchange Protocol for Intelligent Transportation Systems (ITS) (Jan 2011). IEEE Std 1609.11-2010, 1–189.Google Scholar
  54. 54.
    IEEE Standard for Wireless Access in Vehicular Environments (WAVE)—Identifier Allocations. (2012). IEEE Std 1609.12-2012, 1–20, doi: 10.1109/ieeestd.2012.6308691.
  55. 55.
    Chen, Q., Jiang, D., & Delgrossi, L. (2009). IEEE 1609.4 DSRC multi-channel operations and its implications on vehicle safety communications. In 2009 IEEE Vehicular Networking Conference (VNC) (pp. 1–8). IEEE.Google Scholar
  56. 56.
    Miller, R., & Huang, Q. (2002). An adaptive peer-to-peer collision warning system. In Vehicular technology conference, 2002. VTC Spring 2002. IEEE 55th (Vol. 1, pp. 317–321). IEEE.Google Scholar
  57. 57.
    Zhang, D., Xiong, H., Yang, L., & Gauither, V. (2013). NextCell: Predicting location using social interplay from cell phone traces. IEEE Transactions on Computers, PP(99), 1–1. doi: 10.1109/tc.2013.223.Google Scholar
  58. 58.
    Zhang, D., Vasilakos, A. V., & Xiong, H. (2012). Predicting location using mobile phone calls. ACM SIGCOMM Computer Communication Review, 42(4), 295–296.CrossRefGoogle Scholar
  59. 59.
    Liu, J., Wang, Q., Wan, J., & Xiong, J. (2012). Towards real-time indoor localization in wireless sensor networks. In IEEE 12th international conference on computer and information technology (pp. 877–884). IEEE.Google Scholar
  60. 60.
    Liu, J., Wang, Q., Chen, X., & Huang, W. (2013). A novel wireless 3D localization method supported by WSN. International Journal of Online Engineering, 9(2),Google Scholar
  61. 61.
    Parker, R., & Valaee, S. (2007). Vehicular node localization using received-signal-strength indicator. IEEE Transactions on Vehicular Technology, 56(6), 3371–3380.CrossRefGoogle Scholar
  62. 62.
    Alam, N., & Tabatabaei Balaei, A. (2011). A DSRC Doppler-based cooperative positioning enhancement for vehicular networks with GPS availability. IEEE Transactions on Vehicular Technology, 60(9), 4462–4470.CrossRefGoogle Scholar
  63. 63.
    Dao, T.-S., Leung, K. Y. K., Clark, C. M., & Huissoon, J. P. (2007). Markov-based lane positioning using intervehicle communication. IEEE Transactions on Intelligent Transportation Systems, 8(4), 641–650.CrossRefGoogle Scholar
  64. 64.
    Eun-Kyu, L., Sungwon, Y., Oh, S. Y., & Gerla, M. (2009). RF-GPS: RFID assisted localization in VANETs. In IEEE 6th International Conference on mobile adhoc and sensor systems, 2009. MASS ’09. 12–15 Oct. 2009 (pp. 621–626). doi: 10.1109/mobhoc.2009.5336946.
  65. 65.
    Li, Q., Fang, Z., & Li, H. (2004). The application of integrated GPS and dead reckoning positioning in automotive intelligent navigation system. Positioning, 1, 0.Google Scholar
  66. 66.
    Lochert, C., Hartenstein, H., Tian, J., Fussler, H., Hermann, D., & Mauve, M. (2003). A routing strategy for vehicular ad hoc networks in city environments. In Proceedings of 2003 IEEE intelligent vehicles symposium (pp. 156–161). IEEE.Google Scholar
  67. 67.
    Lee, K. C., Härri, J., Lee, U., & Gerla, M. (2007). Enhanced perimeter routing for geographic forwarding protocols in urban vehicular scenarios. In 2007 IEEE Globecom Workshops (pp. 1–10). IEEE.Google Scholar
  68. 68.
    Tian, D., Shafiee, K., & Leung, V. C. (2009). Position-based directional vehicular routing. In 2009 IEEE Global Telecommunications Conference (pp. 1–6). IEEE.Google Scholar
  69. 69.
    Gong, J., Xu, C.-Z., & Holle, J. (2007). Predictive directional greedy routing in vehicular ad hoc networks. In The 27th international conference on distributed computing systems workshops (pp. 2–2). IEEE.Google Scholar
  70. 70.
    Ali, S., & Bilal, S. M. (2009). An intelligent routing protocol for VANETs in city environments. In 2nd International conference on computer, control and communication (pp. 1–5). IEEE.Google Scholar
  71. 71.
    Bilal, S., Madani, S. A., & Khan, I. (2011). Enhanced junction selection mechanism for routing protocol in VANETs. The International Arab Journal of Information Technology, 8(4), 422–429.Google Scholar
  72. 72.
    Bilal, S. M., Mustafa, S., & Saeed, U. (2011). Impact of directional density on GyTAR routing protocol for VANETs in city environments. In 2011 IEEE 14th international multitopic conference (INMIC) (pp. 296–300). IEEE.Google Scholar
  73. 73.
    Karp, B. (May 2001). Challenges in geographic routing: Sparse networks, obstacles, and traffic provisioning. In Talk at DIMACS Workshop on Pervasive Networking.Google Scholar
  74. 74.
    Camp, T., Boleng, J., & Wilcox, L. (2002). Location information services in mobile ad hoc networks. In ICC 2002. IEEE International Conference on Communications, 2002, 5, (pp. 3318–3324). IEEE.Google Scholar
  75. 75.
    Lee, K. C., Lee, U., & Gerla, M. (2009). TO-GO: TOpology-assist geo-opportunistic routing in urban vehicular grids. In Proceedings of the 6th international conference on wireless on-demand network systems and services (pp. 11–18). IEEE.Google Scholar
  76. 76.
    Cheng, P.-C., Lee, K. C., Gerla, M., & Härri, J. (2010). GeoDTN+ Nav: Geographic DTN routing with navigator prediction for urban vehicular environments. Mobile Networks and Applications, 15(1), 61–82.CrossRefGoogle Scholar
  77. 77.
    Wu, D., Zhang, Y., Bao, L., & Regan, A. C. (2013). Location-based crowdsourcing for vehicular communication in hybrid networks. IEEE Transactions on Intelligent Transportation Systems, 14(2), 837–846. doi: 10.1109/tits.2013.2243437.CrossRefGoogle Scholar
  78. 78.
    Haerri, J., Filali, F., Bonnet, C., & Fiore, M. (2006). VanetMobiSim: Generating realistic mobility patterns for VANETs. In Proceedings of the 3rd international workshop on Vehicular ad hoc networks, Los Angeles (pp. 96–97). ACM.Google Scholar
  79. 79.
    Zhao, J., & Cao, G. (2008). VADD: Vehicle-Assisted Data Delivery in Vehicular Ad Hoc Networks. IEEE Transactions on Vehicular Technology, 57(3), 1910–1922.CrossRefGoogle Scholar
  80. 80.
    Jarupan, B., & Ekici, E. (2010). PROMPT: A cross-layer position-based communication protocol for delay-aware vehicular access networks. Ad Hoc Networks, 8(5), 489–505.CrossRefGoogle Scholar
  81. 81.
    Skordylis, A., & Trigoni, N. (2008). Delay-bounded routing in vehicular ad-hoc networks. In Proceedings of the 9th ACM international symposium on Mobile ad hoc networking and computing (pp. 341–350). ACM.Google Scholar
  82. 82.
    Zhang, Yin, Min Chen, S., & Hu, V. Leung. (2014). CAP: Crowd activity prediction based on big data analysis. IEEE Network, 28(4), 52–57.CrossRefGoogle Scholar
  83. 83.
    Zhang, Y., Zhang, D., et al. (2014). CADRE: Cloud-assisted drug recommendation service for online pharmacies. ACM/Springer Mobile Networks and Applications. doi: 10.1007/s11036-014-0537-4.

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jianqi Liu
    • 1
  • Jiafu Wan
    • 2
    Email author
  • Qinruo Wang
    • 3
  • Pan Deng
    • 4
  • Keliang Zhou
    • 5
  • Yupeng Qiao
    • 6
  1. 1.School of Information EngineeringGuangdong Mechanical and Electrical CollegeGuangzhouChina
  2. 2.School of Mechanical and Automotive EngineeringSouth China University of TechnologyGuangzhouChina
  3. 3.Faculty of AutomationGuangdong University of TechnologyGuangzhouChina
  4. 4.Parallel Computing LaboratoryInstitute of Software of Chinese Academy of SciencesBeijingChina
  5. 5.College of Electrical Engineering and AutomationJiangxi University of Science and TechnologyGanzhouChina
  6. 6.College of Automation Science and EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations