Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A survey on position-based routing for vehicular ad hoc networks

Abstract

Position-based routing is considered to be a very promising routing strategy for communication within vehicular ad hoc networks (VANETs), due to the fact that vehicular nodes can obtain position information from onboard global positioning system receivers and acquire global road layout information from an onboard digital map. Position-based routing protocols, which are based mostly on greedy forwarding, are well-suited to the highly dynamic and rapid-changing network topology of VANETs. In this paper, we outline the background and the latest development in VANETs and survey the state-of-the-art routing protocols previously used in VANETs. We present the pros and cons for each routing protocol, and make a detailed comparison. We also discuss open issues, challenges and future research directions. It is observed that a hybrid routing protocol is the best choice for VANETs in both urban and highway environments.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Wan, J., Yan, H., Suo, H., & Li, F. (2011). Advances in cyber-physical systems research. KSII Transactions on Internet and Information Systems, 5(11), 1891–1908.

  2. 2.

    Qiu, M., Gao, W., Chen, M., Niu, J.-W., & Zhang, L. (2011). Energy efficient security algorithm for power grid wide area monitoring system. IEEE Transactions on Smart Grid, 2(4), 715–723.

  3. 3.

    Li, F., & Wang, Y. (2007). Routing in vehicular ad hoc networks: A survey. IEEE Vehicular Technology Magazine, 2(2), 12–22.

  4. 4.

    Zhang, D., Huang, H., Zhou, J., Xia, F., & Chen, Z. (2013). Detecting hot road mobility of vehicular Ad Hoc networks. Mobile Networks and Applications, 18(6), 803–813.

  5. 5.

    Wan, J., Yan, H., Li, D., Zhou, K., & Zeng, L. (2013). Cyber-physical systems for optimal energy management scheme of autonomous electric vehicle. The Computer Journal, 56(8), 947–956.

  6. 6.

    Lin, K., Chen, M., Zeadally, S., & Rodrigues, J. J. (2012). Balancing energy consumption with mobile agents in wireless sensor networks. Future Generation Computer Systems, 28(2), 446–456.

  7. 7.

    Zhang, D., Yang, Z., Raychoudhury, V., Chen, Z., & Lloret, J. (2013). An energy-efficient routing protocol using movement trends in vehicular ad hoc networks. The Computer Journal, 1–9.

  8. 8.

    Skraba, P., Aghajan, H., & Bahai, A. (2004). Distributed passive routing decisions in mobile ad-hoc networks. In 2004 IEEE 60th vehicular technology conference, 2004. VTC2004-Fall, 26–29 Sept. 2004 (Vol. 4, pp. 2814–2818). doi:10.1109/vetecf.2004.1400572.

  9. 9.

    Bilal, S. M., Bernardos, C. J., & Guerrero, C. (2012). Position based routing in vehicular networks: A survey. Journal of Network and Computer Applications, 36(2), 685–697. doi:10.1016/j.jnca.2012.12.023.

  10. 10.

    Ding, Z., & Leung, K. K. (2011). Cross-layer routing using cooperative transmission in vehicular ad-hoc networks. IEEE Journal on Selected Areas in Communications, 29(3), 571–581.

  11. 11.

    Goonewardene, R., Ali, F., & Stipidis, E. (2009). Robust mobility adaptive clustering scheme with support for geographic routing for vehicular ad hoc networks. IET Intelligent Transport Systems, 3(2), 148–158.

  12. 12.

    Huang, X., & Fang, Y. (2009). Performance study of node-disjoint multipath routing in vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 58(4), 1942–1950.

  13. 13.

    Jerbi, M., Senouci, S.-M., Rasheed, T., & Ghamri-Doudane, Y. (2009). Towards efficient geographic routing in urban vehicular networks. IEEE Transactions on Vehicular Technology, 58(9), 5048–5059.

  14. 14.

    Karagiannis, G., Altintas, O., Ekici, E., Heijenk, G., Jarupan, B., Lin, K., et al. (2011). Vehicular networking: A survey and tutorial on requirements, architectures, challenges, standards and solutions. IEEE Communications Surveys & Tutorials, 13(4), 584–616.

  15. 15.

    Mershad, K., Artail, H., & Gerla, M. (2012). ROAMER: Roadside units as message routers in VANETs. Ad Hoc Networks, 10(3), 479–496.

  16. 16.

    Mershad, K., Artail, H., & Gerla, M. (2012). We can deliver messages to far vehicles. IEEE Transactions on Intelligent Transportation Systems, 13(3), 1099–1115.

  17. 17.

    Nzouonta, J., Rajgure, N., Wang, G., & Borcea, C. (2009). VANET routing on city roads using real-time vehicular traffic information. IEEE Transactions on Vehicular Technology, 58(7), 3609–3626.

  18. 18.

    Saleet, H., Langar, R., Naik, K., Boutaba, R., Nayak, A., & Goel, N. (2011). Intersection-based geographical routing protocol for VANETs: A proposal and analysis. IEEE Transactions on Vehicular Technology, 60(9), 4560–4574.

  19. 19.

    Shafiee, K., & Leung, V. (2011). Connectivity-aware minimum-delay geographic routing with vehicle tracking in VANETs. Ad Hoc Networks, 9(2), 131–141.

  20. 20.

    Sofra, N., Gkelias, A., & Leung, K. K. (2011). Route construction for long lifetime in VANETs. IEEE Transactions on Vehicular Technology, 60(7), 3450–3461.

  21. 21.

    Taleb, T., Sakhaee, E., Jamalipour, A., Hashimoto, K., Kato, N., & Nemoto, Y. (2007). A stable routing protocol to support ITS services in VANET networks. IEEE Transactions on Vehicular Technology, 56(6), 3337–3347.

  22. 22.

    Thati, A. S. (2013). A new scalable hybrid routing protocol for VANETS. International Journal of Engineering, 2(11).

  23. 23.

    Wang, W., Xie, F., & Chatterjee, M. (2009). Small-scale and large-scale routing in vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 58(9), 5200–5213.

  24. 24.

    Wu, C., Ohzahata, S., & Kato, T. (2013). Flexible, portable and practicable solution for routing in VANETs: A fuzzy constraint Q-learning approach. IEEE Transactions on Vehicular Technology, 62(9), 4251–4263.

  25. 25.

    Xiang, Y., Liu, Z., Liu, R., Sun, W., & Wang, W. (2013). GeoSVR: A map-based stateless VANET routing. Ad Hoc Networks, 11(7), 2125–2135. doi:10.1016/j.adhoc.2012.02.015.

  26. 26.

    Yang, Q., Lim, A., Li, S., Fang, J., & Agrawal, P. (2010). ACAR: Adaptive connectivity aware routing for vehicular ad hoc networks in city scenarios. Mobile Networks and Applications, 15(1), 36–60.

  27. 27.

    Perkins, C. E., & Bhagwat, P. (1994). Highly dynamic destination-sequenced distance-vector routing (DSDV) for mobile computers. In ACM SIGCOMM Computer Communication Review (Vol. 24, pp. 234–244). ACM.

  28. 28.

    Perkins, C., Belding-Royer, E., & Das, S. (2003). Ad hoc on demand distance vector (AODV) routing (RFC 3561). IETF MANET Working Group (August. 2003).

  29. 29.

    Dhurandher, S., Misra, S., Obaidat, M., Gupta, M., Diwakar, K., & Gupta, P. (2010). Efficient angular routing protocol for inter-vehicular communication in vehicular ad hoc networks. IET Communications, 4(7), 826–836.

  30. 30.

    Namboodiri, V., Agarwal, M., & Gao, L. (2004). A study on the feasibility of mobile gateways for vehicular ad-hoc networks. In Proceedings of the 1st ACM international workshop on vehicular ad hoc networks, (pp. 66–75). ACM.

  31. 31.

    Naumov, V., Baumann, R., & Gross, T. (2006). An evaluation of inter-vehicle ad hoc networks based on realistic vehicular traces. In Proceedings of the 7th ACM international symposium on Mobile ad hoc networking and computing (pp. 108–119). ACM.

  32. 32.

    Lochert, C., Mauve, M., Füßler, H., & Hartenstein, H. (2005). Geographic routing in city scenarios. ACM SIGMOBILE Mobile Computing and Communications Review, 9(1), 69–72.

  33. 33.

    Karp, B., & Kung, H.-T. (2000). GPSR: Greedy perimeter stateless routing for wireless networks. In Proceedings of the 6th annual international conference on Mobile computing and networking, (pp. 243–254). ACM.

  34. 34.

    Giudici, F., & Pagani, E. (2005). Spatial and traffic-aware routing (STAR) for vehicular systems. In High performance computing and communications (pp. 77–86). Springer.

  35. 35.

    Jerbi, M., Meraihi, R., Senouci, S.-M., & Ghamri-Doudane, Y. (2006). GyTAR: Improved greedy traffic aware routing protocol for vehicular ad hoc networks in city environments. In Proceedings of the 3rd international workshop on Vehicular ad hoc networks (pp. 88–89). ACM.

  36. 36.

    Blum, J., Eskandarian, A., & Hoffman, L. (2003). Mobility management in IVC networks. In Proceedings of 2003 IEEE Intelligent Vehicles Symposium (pp. 150–155). IEEE.

  37. 37.

    Santos, R., Edwards, R., & Edwards, A. (2004). Cluster-based location routing algorithm for inter-vehicle communication. In 2004 IEEE 60th Vehicular Technology Conference (Vol. 2, pp. 914–918). IEEE.

  38. 38.

    Korkmaz, G., Ekici, E., Özgüner, F., & Özgüner, Ü. (2004). Urban multi-hop broadcast protocol for inter-vehicle communication systems. In Proceedings of the 1st ACM international workshop on vehicular ad hoc networks (pp. 76–85). ACM.

  39. 39.

    Osafune, T., Lin, L., & Lenardi, M. (2006). Multi-hop vehicular broadcast (MHVB). In 2006 6th international conference on ITS telecommunications (pp. 757–760). IEEE.

  40. 40.

    Mariyasagayam, M., Osafune, T., & Lenardi, M. (2007). Enhanced multi-hop vehicular broadcast (MHVB) for active safety applications. In The 7th international conference on ITS telecommunications (pp. 1–6). IEEE.

  41. 41.

    Suriyapaibonwattana, K., & Pomavalai, C. (2008). An effective safety alert broadcast algorithm for VANET. In International symposium on communications and information technologies (pp. 247–250). IEEE.

  42. 42.

    Adler, C., Eichler, S., Kosch, T., Schroth, C., & Strassberger, M. (2006). Self-organized and context-adaptive information diffusion in vehicular ad hoc networks. In the 3rd international symposium on wireless communication systems (ISWCS’06) (pp. 307–311). IEEE.

  43. 43.

    Liu, J., Wang, Q., Wan, J., Xiong, J., & Zeng, B. (2013). Towards key issues of disaster aid based on wireless body area networks. KSII Transactions on Internet and Information Systems, 7(5), 1014–1035.

  44. 44.

    Chen, M., Ma, Y., Ullah, S., Cai, W., & Song, E. (2013). ROCHAS: Robotics and cloud-assisted healthcare system for empty nester. In Proceedings of the 8th international conference on body area networks (pp. 217–220). ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering).

  45. 45.

    Chen, M., Vasilakos, A. V., & Grace, D. (2012). Advances in green mobile networks. Mobile Networks and Applications, 17(1), 1–3.

  46. 46.

    Wan, J., Zhang, D., Sun, Y., Lin, K., Zou, C., & Cai, H. (2014). VCMIA: A novel architecture for integrating vehicular cyber-physical systems and mobile cloud computing. Mobile Networks and Applications, 19(2), 153–160.

  47. 47.

    Wan, J., Chen, M., Xia, F., Di, L., & Zhou, K. (2013). From machine-to-machine communications towards cyber-physical systems. Computer Science and Information Systems, 10(3), 1105–1128.

  48. 48.

    Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Mobile Networks and Applications, 1–39.

  49. 49.

    Trial-Use Standard for Wireless Access in Vehicular Environments (WAVE)—Resource Manager. (2006). IEEE Std 1609.1-2006 (pp. 1–71). doi:10.1109/ieeestd.2006.246485.

  50. 50.

    IEEE Draft Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management Messages. (2012). IEEE P1609.2/D12, January 2012, 1–266.

  51. 51.

    IEEE Trial-Use Standard for Wireless Access in Vehicular Environments (WAVE)—Networking Services (2007). IEEE Std 1609.3-2007, 1–99. doi:10.1109/ieeestd.2007.353212.

  52. 52.

    IEEE Standard for Wireless Access in Vehicular Environments (WAVE)-Multi-channel Operation. (2011). IEEE Std 1609.4-2010 (Revision of IEEE Std 1609.4-2006), 1–89. doi:10.1109/ieeestd.2011.5712769.

  53. 53.

    IEEE Standard for Wireless Access in Vehicular Environments (WAVE)-Over-the-Air Electronic Payment Data Exchange Protocol for Intelligent Transportation Systems (ITS) (Jan 2011). IEEE Std 1609.11-2010, 1–189.

  54. 54.

    IEEE Standard for Wireless Access in Vehicular Environments (WAVE)—Identifier Allocations. (2012). IEEE Std 1609.12-2012, 1–20, doi:10.1109/ieeestd.2012.6308691.

  55. 55.

    Chen, Q., Jiang, D., & Delgrossi, L. (2009). IEEE 1609.4 DSRC multi-channel operations and its implications on vehicle safety communications. In 2009 IEEE Vehicular Networking Conference (VNC) (pp. 1–8). IEEE.

  56. 56.

    Miller, R., & Huang, Q. (2002). An adaptive peer-to-peer collision warning system. In Vehicular technology conference, 2002. VTC Spring 2002. IEEE 55th (Vol. 1, pp. 317–321). IEEE.

  57. 57.

    Zhang, D., Xiong, H., Yang, L., & Gauither, V. (2013). NextCell: Predicting location using social interplay from cell phone traces. IEEE Transactions on Computers, PP(99), 1–1. doi:10.1109/tc.2013.223.

  58. 58.

    Zhang, D., Vasilakos, A. V., & Xiong, H. (2012). Predicting location using mobile phone calls. ACM SIGCOMM Computer Communication Review, 42(4), 295–296.

  59. 59.

    Liu, J., Wang, Q., Wan, J., & Xiong, J. (2012). Towards real-time indoor localization in wireless sensor networks. In IEEE 12th international conference on computer and information technology (pp. 877–884). IEEE.

  60. 60.

    Liu, J., Wang, Q., Chen, X., & Huang, W. (2013). A novel wireless 3D localization method supported by WSN. International Journal of Online Engineering, 9(2),

  61. 61.

    Parker, R., & Valaee, S. (2007). Vehicular node localization using received-signal-strength indicator. IEEE Transactions on Vehicular Technology, 56(6), 3371–3380.

  62. 62.

    Alam, N., & Tabatabaei Balaei, A. (2011). A DSRC Doppler-based cooperative positioning enhancement for vehicular networks with GPS availability. IEEE Transactions on Vehicular Technology, 60(9), 4462–4470.

  63. 63.

    Dao, T.-S., Leung, K. Y. K., Clark, C. M., & Huissoon, J. P. (2007). Markov-based lane positioning using intervehicle communication. IEEE Transactions on Intelligent Transportation Systems, 8(4), 641–650.

  64. 64.

    Eun-Kyu, L., Sungwon, Y., Oh, S. Y., & Gerla, M. (2009). RF-GPS: RFID assisted localization in VANETs. In IEEE 6th International Conference on mobile adhoc and sensor systems, 2009. MASS ’09. 12–15 Oct. 2009 (pp. 621–626). doi:10.1109/mobhoc.2009.5336946.

  65. 65.

    Li, Q., Fang, Z., & Li, H. (2004). The application of integrated GPS and dead reckoning positioning in automotive intelligent navigation system. Positioning, 1, 0.

  66. 66.

    Lochert, C., Hartenstein, H., Tian, J., Fussler, H., Hermann, D., & Mauve, M. (2003). A routing strategy for vehicular ad hoc networks in city environments. In Proceedings of 2003 IEEE intelligent vehicles symposium (pp. 156–161). IEEE.

  67. 67.

    Lee, K. C., Härri, J., Lee, U., & Gerla, M. (2007). Enhanced perimeter routing for geographic forwarding protocols in urban vehicular scenarios. In 2007 IEEE Globecom Workshops (pp. 1–10). IEEE.

  68. 68.

    Tian, D., Shafiee, K., & Leung, V. C. (2009). Position-based directional vehicular routing. In 2009 IEEE Global Telecommunications Conference (pp. 1–6). IEEE.

  69. 69.

    Gong, J., Xu, C.-Z., & Holle, J. (2007). Predictive directional greedy routing in vehicular ad hoc networks. In The 27th international conference on distributed computing systems workshops (pp. 2–2). IEEE.

  70. 70.

    Ali, S., & Bilal, S. M. (2009). An intelligent routing protocol for VANETs in city environments. In 2nd International conference on computer, control and communication (pp. 1–5). IEEE.

  71. 71.

    Bilal, S., Madani, S. A., & Khan, I. (2011). Enhanced junction selection mechanism for routing protocol in VANETs. The International Arab Journal of Information Technology, 8(4), 422–429.

  72. 72.

    Bilal, S. M., Mustafa, S., & Saeed, U. (2011). Impact of directional density on GyTAR routing protocol for VANETs in city environments. In 2011 IEEE 14th international multitopic conference (INMIC) (pp. 296–300). IEEE.

  73. 73.

    Karp, B. (May 2001). Challenges in geographic routing: Sparse networks, obstacles, and traffic provisioning. In Talk at DIMACS Workshop on Pervasive Networking.

  74. 74.

    Camp, T., Boleng, J., & Wilcox, L. (2002). Location information services in mobile ad hoc networks. In ICC 2002. IEEE International Conference on Communications, 2002, 5, (pp. 3318–3324). IEEE.

  75. 75.

    Lee, K. C., Lee, U., & Gerla, M. (2009). TO-GO: TOpology-assist geo-opportunistic routing in urban vehicular grids. In Proceedings of the 6th international conference on wireless on-demand network systems and services (pp. 11–18). IEEE.

  76. 76.

    Cheng, P.-C., Lee, K. C., Gerla, M., & Härri, J. (2010). GeoDTN+ Nav: Geographic DTN routing with navigator prediction for urban vehicular environments. Mobile Networks and Applications, 15(1), 61–82.

  77. 77.

    Wu, D., Zhang, Y., Bao, L., & Regan, A. C. (2013). Location-based crowdsourcing for vehicular communication in hybrid networks. IEEE Transactions on Intelligent Transportation Systems, 14(2), 837–846. doi:10.1109/tits.2013.2243437.

  78. 78.

    Haerri, J., Filali, F., Bonnet, C., & Fiore, M. (2006). VanetMobiSim: Generating realistic mobility patterns for VANETs. In Proceedings of the 3rd international workshop on Vehicular ad hoc networks, Los Angeles (pp. 96–97). ACM.

  79. 79.

    Zhao, J., & Cao, G. (2008). VADD: Vehicle-Assisted Data Delivery in Vehicular Ad Hoc Networks. IEEE Transactions on Vehicular Technology, 57(3), 1910–1922.

  80. 80.

    Jarupan, B., & Ekici, E. (2010). PROMPT: A cross-layer position-based communication protocol for delay-aware vehicular access networks. Ad Hoc Networks, 8(5), 489–505.

  81. 81.

    Skordylis, A., & Trigoni, N. (2008). Delay-bounded routing in vehicular ad-hoc networks. In Proceedings of the 9th ACM international symposium on Mobile ad hoc networking and computing (pp. 341–350). ACM.

  82. 82.

    Zhang, Yin, Min Chen, S., & Hu, V. Leung. (2014). CAP: Crowd activity prediction based on big data analysis. IEEE Network, 28(4), 52–57.

  83. 83.

    Zhang, Y., Zhang, D., et al. (2014). CADRE: Cloud-assisted drug recommendation service for online pharmacies. ACM/Springer Mobile Networks and Applications. doi:10.1007/s11036-014-0537-4.

Download references

Acknowledgments

The authors would like to thank the Natural Science Foundation of Guangdong Province, China (No. 9151009001000021), the National Natural Science Foundation of China (Nos. 61262013, 61363011, 61100066, 61104219), the Opening Fund of Guangdong Province Key Laboratory of Precision Equipment and Manufacturing Technology (No. PEMT1303), the Strategic Emerging Industry Project of Guangdong Province (No. 2012A010702004), the High-level Talent Project for Universities, Guangdong Province, China (No. 431, YueCaiJiao 2011), the Foundation for Distinguished Young Talents in Higher Education of Guangdong Province (No. LYM11010), and 2013 Higher Vocational Education Teaching Reform Project of Guangdong Province (No. 20130301011) for their support in this research.

Author information

Correspondence to Jiafu Wan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Wan, J., Wang, Q. et al. A survey on position-based routing for vehicular ad hoc networks. Telecommun Syst 62, 15–30 (2016). https://doi.org/10.1007/s11235-015-9979-7

Download citation

Keywords

  • VANET
  • Position-based routing
  • Forwarding strategy
  • Intelligent transportation systems
  • Internet of vehicle