Telecommunication Systems

, Volume 63, Issue 2, pp 307–333 | Cite as

Connectivity and energy-aware preorders for mobile ad-hoc networks

  • Lucia Gallina
  • Andrea MarinEmail author
  • Sabina Rossi


Network connectivity and energy conservation are two major goals in mobile ad-hoc networks (MANETs). In this paper we propose a probabilistic, energy-aware, broadcast calculus for the analysis of both such aspects of MANETs. We first present a probabilistic behavioural congruence together with a co-inductive proof technique based on the notion of bisimulation. Then we define an energy-aware preorder over networks. The behavioural congruence allows us to verify whether two networks exhibit the same (probabilistic) connectivity behaviour, while the preorder makes it possible to evaluate the energy consumption of different, but behaviourally equivalent, networks. In practice, the quantitative evaluation of the models is carried out by resorting to the statistical model checking implemented in the PRISM tool, i.e., a simulation of the probabilistic model. We consider two case studies: first we evaluate the performance of the Location Aided Routing protocol, then we compare the energy efficiency of the Go-Back-N protocol with that of the Stop-And-Wait in a network with mobility.


Manets Process algebras Energy conservation Performance evaluation Simulation 



Work partially supported by the Italian MIUR-PRIN Project CINA: Compositionality, Interaction, Negotiation and Autonomicity.


  1. 1.
    Abadi, M., & Fournet, C. (2001). Mobile values, new names, and secure communication. SIGPLAN Notices, 36(3), 104–115.CrossRefGoogle Scholar
  2. 2.
    Abreu, C., Ricardo, M., & Mendes, P. M. (2014). Energy-aware routing for biomedical wireless sensor networks. Journal of Network and Computer Applications, 40, 270–278.CrossRefGoogle Scholar
  3. 3.
    Acquaviva, A., Aldini, A., Bernardo, M., Bogliolo, A., Bontà, E., & Lattanzi, E. (2005). A methodology based on formal methods for predicting the impact of dynamic power management. In Formal methods for mobile computing, volume 3465 of LNCS (pp. 51–58). Berlin: Springer.Google Scholar
  4. 4.
    Beccuti, M., De Pierro, M., Horvàth, A., Horvàth, A., & Farkas, K. (2011). A mean field based methodology for modeling mobility in ad hoc networks. In Proceedings of 73rd IEEE vehicular technology conference (VTC Spring), Budapest, HU (pp. 1–5). IEEE.Google Scholar
  5. 5.
    Bernardo, M., & Bravetti, M. (2003). Performance measure sensitive congruences for Markovian process algebras. Theoretical Computer Science, 290(1), 117–160.CrossRefGoogle Scholar
  6. 6.
    Bugliesi, M., Gallina, L., Hamadou, S., Marin, A., & Rossi, S. (2014). Behavioral equivalences and interference metrics for mobile ad-hoc networks. Performance Evaluation, 73, 41–72.CrossRefGoogle Scholar
  7. 7.
    Burkhart, M., von Rickenbach, P., Wattenhofer, R., & Zollinger, A. (2004). Does topology control reduce interference? In Proceedings of the 5th ACM international symposium on mobile ad hoc networking and computing (MobiHoc ’04) (pp. 9–19). ACM.Google Scholar
  8. 8.
    Calamoneri, T., Clementi, A., Monti, A., Rossi, G., & Silvestri, R. (2008). Minimum-energy broadcast in random-grid ad-hoc networks: Approximation and distributed algorithms. In Proceedings of the 11th international symposium on modeling, analysis and simulation of wireless and mobile systems (MSWiM ’08) (pp. 354–361). ACM.Google Scholar
  9. 9.
    Cerone, A., & Hennessy, M. (2013). Modelling probabilistic wireless networks. Logical Methods in Computer Science, 9(3), 1–68.CrossRefGoogle Scholar
  10. 10.
    De Nicola, R., Katoen, J.-P., Latella, D., & Massink, M. (2006). STOKLAIM: A stochastic extension of KLAIM. Technical Report 2006-TR-01, ISTI.Google Scholar
  11. 11.
    Ferrari, G., Malvassori, S. A., Bragalini, M., & Tonguz, O. K. (2005). Physical layer-constrained routing in ad-hoc wireless networks: A modified aodv protocol with power control. In Proceedings of the international workshop on wireless ad-hoc networks (IWWAN’05).Google Scholar
  12. 12.
    Gallina, L., Hamadou, S., Marin, A., & Rossi, S. (2011). A Probabilistic Energy-aware Model for Mobile Ad-hoc Networks. In Proceedings of the 18th international conference on analytical and stochastic modelling techniques and applications (ASMTA’11), volume 6751 of LNCS (pp 316–330). Berlin: Springer.Google Scholar
  13. 13.
    Gallina, L., & Rossi, S. (2010). A calculus for power-aware multicast communications in ad-hoc networks. In Proceedings of the 6th IFIP international conference on theoretical computer science (TCS’10) (pp. 20–31). Berlin: Springer.Google Scholar
  14. 14.
    Gallina, L., & Rossi, S. (2010). Sender- and receiver-centered interference in wireless ad-hoc networks. In Proceedings of IFIP wireless days 2010. IEEE.Google Scholar
  15. 15.
    Gallina, L., & Rossi, S. (2013). A process calculus for energy-aware multicast communications of mobile ad-hoc networks. Wireless Communications and Mobile Computing, 13(3), 296–312.CrossRefGoogle Scholar
  16. 16.
    Gilmore, S., & Hillston, J. (1994). (1994). The PEPA workbench: A tool to support a process algebra-based approach to performance modelling. In Computer performance evaluation modelling techniques and tools, volume 794 of LNCS (pp. 353–368). Berlin: Springer.Google Scholar
  17. 17.
    Gomez, J., & Campbell, A. T. (2007). Variable-range transmission power control in wireless multihop networks. IEEE Transactions on Mobile Computing (TMC), 6(1), 87–99.CrossRefGoogle Scholar
  18. 18.
    Goubault-Larrecq, J., Palamidessi, C., & Troina, A. (2007). A probabilistic applied pi-calculus. In Proceedings of the 5th Asian symposium on programming languages and systems (APLAS ’07), volume 4807/2009 of LNCS (pp. 175–190). Berlin: Springer.Google Scholar
  19. 19.
    Han, S.-W., Jeong, I.-S., & Kang, S.-H. (2013). Low latency and energy efficient routing tree for wireless sensor networks with multiple mobile sinks. Journal of Network and Computer Applications, 36(1), 156–166.CrossRefGoogle Scholar
  20. 20.
    Han, T., Gallina, L., Kwiatkowska, M., Marin, A., Rossi, S., & Spanò, A. (2012). Automatic energy-aware performance analysis of mobile ad-hoc networks. In Proceedings of IFIP wireless days conference (WD’12). IEEE Press.Google Scholar
  21. 21.
    Hennessy, M. (2011). A calculus for costed computations. Logical Methods in Computer Science, 7(1), 1–35.CrossRefGoogle Scholar
  22. 22.
    Hillston, J. (2005). A compositional approach to performance modelling. Distinguished Dissertations in Computer Science. Cambridge: Cambridge University Press.Google Scholar
  23. 23.
    Johnson, D. B., & Maltz, D. A. (1996). (1996). Dynamic Source Routing in Ad hoc Wireless Networks. In Mobile computing, volume 353 of the Kluwer international series in engineering and computer science (pp. 153–181). Berlin: Springer.Google Scholar
  24. 24.
    Kaplan, E. D. (1996). Understanding GPS: Principles and applications. Boston: Artech House Publishing.Google Scholar
  25. 25.
    Ko, Y. B., & Vaidya, N. (2000). Locationaided routing (LAR) in mobile ad hoc networks. Wireless Networks, 6, 307–321.CrossRefGoogle Scholar
  26. 26.
    Kwiatkowska, M. Z., Norman, G., & Parker, D. (2011). PRISM 4.0: Verification of probabilistic real-time systems. In CAV (pp. 585–591).Google Scholar
  27. 27.
    Lanese, I., & Sangiorgi, D. (2010). An operational semantics for a calculus for wireless systems. Theoretical Computer Science, 411(19), 1928–1948.CrossRefGoogle Scholar
  28. 28.
    Lanotte, R., & Merro, M. (2011). (2011). Semantic Analysis of Gossip Protocols for Wireless Sensor Networks. CONCUR 2011 Concurrency Theory (pp. 156–170)., volume 6901 of lncs Berlin / Heidelberg: Springer.Google Scholar
  29. 29.
    Le, L. B., Hossain, E., & Zorzi, M. (2007). Queueing analysis for GBN and SR ARQ protocols under dynamic radio link adaptation with non-zero feedback delay. IEEE Transactions on Wireless Communications, 6(9), 3418–3428.CrossRefGoogle Scholar
  30. 30.
    Macedonio, D., & Merro, M. (2012). A semantic analysis of wireless network security protocols. NASA formal methods, volume 7226 of LNCS (pp. 403–417). Berlin: Springer.Google Scholar
  31. 31.
    Merro, M. (2009). An observational theory for mobile ad hoc networks. Information and Computation, 207(2), 194–208.CrossRefGoogle Scholar
  32. 32.
    Milner, R., & Sangiorgi, D. (1992). Barbed bisimulation. In Proceedings of international colloquium on automata, languages and programming (ICALP ’92), volume 623 of LNCS (pp. 685–695). Berlin: Springer.Google Scholar
  33. 33.
    Mohimani, G. H., Ashtiani, F., Javanmard, A., & Hamdi, M. (2009). Mobility modeling, spatial traffic distribution, and probability of connectivity for sparse and dense vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 58(4), 1998–2007.CrossRefGoogle Scholar
  34. 34.
    Murthy, S., & Garcia-Luna-Aceves, J. (1996). An efficient routing protocol for wireless networks. Mobile Networks and Applications, 1, 183–197.CrossRefGoogle Scholar
  35. 35.
    Papadopoulos, A., Navarra, A., McCann, J. A., & Pinotti, C. M. (2012). Vibe: An energy efficient routing protocol for dense and mobile sensor networks. Journal of Network and Computer Applications, 35(4), 1177–1190.CrossRefGoogle Scholar
  36. 36.
    Park, V. D., & Corson, M. S. (1997). A highly adaptive distributed routing algorithm for mobile wireless networks. In Proceedings of the 16th annual joint conference of the IEEE computer and communications societies (INFOCOM ’97) (Vol. 3, pp. 1405–1413). IEEE.Google Scholar
  37. 37.
    Perkins, C. E., & Bhagwat, P. (1994). Highly dynamic destination-sequenced distance-vector routing (DSDV) for mobile computers. In Proceedings of the conference on communications architectures, protocols and applications, SIGCOMM ’94 (pp. 234–244). New York: ACM.Google Scholar
  38. 38.
    Ross, S. M. (1996). Stochastic processes (2nd ed.). New York: Wiley.Google Scholar
  39. 39.
    Royer, E. M., & Perkins, C. E. (1999). Multicast operation of the ad-hoc on-demand distance vector routing protocol. In Proceedings of the 5th annual ACM/IEEE international conference on mobile computing and networking (pp. 207–218). ACM.Google Scholar
  40. 40.
    Sanchez, M., Manzoni, P., & Haas, Z. J. (1999). Determination of critical transmission range in ad-hoc networks. In Proceedi ngs of the multiaccess, mobility and teletraffic for wireless communications conference (MMT ’99).Google Scholar
  41. 41.
    Sarkar, S., & Majumder, K. (2014). A survey on power aware routing protocols for mobile ad-hoc network. In Proceedings of the international conference on frontiers of intelligent computing: Theory and applications (FICTA) 2013, volume 247 of advances in intelligent systems and computing (pp. 313–320). Berlin: Springer.Google Scholar
  42. 42.
    Segala, R., & Lynch, N. A. (1994). Probabilistic simulations for probabilistic processes. In Proceedings of the 5th international conference on concurrency theory (CONCUR ’94), volume 836 of LNCS (pp. 481–496). Berlin: Springer.Google Scholar
  43. 43.
    Singh, S., Woo, M., & Raghavendra, C. S. (1998). Power-aware routing in mobile ad hoc networks. In Proceedings of the 4th annual ACM/IEEE international conference on mobile computing and networking (MobiCom’98) (pp. 181–190). ACM.Google Scholar
  44. 44.
    Song, L., & Godskesen, J. (2010). Probabilistic mobility models for mobile and wireless networks. In Proceedings of the 6th IFIP TC 1/WG 202 international conference on theoretical computer science (TCS’10), volume 323 of IFIP advances in information and communication technology (pp. 86–100). Boston: Springer.Google Scholar
  45. 45.
    Song, L., & Godskesen, J. (2012). Broadcast abstraction in a stochastic calculus for mobile networks. In Proceedins of the 7th IFIP TC 1/WG 202 international conference on theoretical computer science (TCS’12), volume 7604 of LNCS (pp. 342–356). Berlin: Springer.Google Scholar
  46. 46.
    Stojmenovic, I., & Lin, X. (2001). Power-aware localized routing in wireless networks. IEEE Transactions on Parallel and Distributed Systems, 12(11), 1122–1133.CrossRefGoogle Scholar
  47. 47.
    Tadayon, N., Khoshroo, S., Askari, E., Wang, H., & Michel, H. (2013). Power management in SMAC-based energy-harvesting wireless sensor networks using queuing analysis. Journal of Network and Computer Applications, 36(3), 1008–1017.CrossRefGoogle Scholar
  48. 48.
    Tanenbaum, A. S. (2003). Computer Networks. New Jersey: Prentice-Hall.Google Scholar
  49. 49.
    Wattenhofer, R., Li, L., Bahl, P., & Wang, Y. M. (2001). Distributed topology control for power efficient operation in multihop wireless ad hoc networks. In Proceedings of 20th annual joint conference of the IEEE computer and communications societies (INFOCOM ’01) (Vol. 3, pp. 1388–1397). IEEE.Google Scholar
  50. 50.
    Zorzi, M., & Rao, R. R. (1997). Error control and energy consumption in communications for nomadic computing. IEEE Transactions on Computers, 46(3), 279–289.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.DAISUniversità Ca’ Foscari VeneziaMestre VeneziaItaly

Personalised recommendations