Telecommunication Systems

, Volume 63, Issue 2, pp 169–190 | Cite as

Adoption of dynamic spectrum access technologies: a system dynamics approach

  • Arturo Basaure
  • Varadharajan Sridhar
  • Heikki Hämmäinen


The introduction of dynamic spectrum access (DSA) technologies in mobile markets faces technical, economic and regulatory challenges. This paper defines industry openness and spectrum centralization as the two key factors that affect the adoption of DSA technologies. The adoption process is analyzed employing a comprehensive System Dynamics model that considers the network and substitution effects. Two possible scenarios, namely operator-centric and user-centric adoption of DSA technologies are explored in the model. The analysis indicates that operator-centric DSA technologies may be adopted in most countries where spectrum is centralized, while end-user centric DSA technologies may be adopted in countries with decentralized spectrum regime and in niche emerging services. The study highlights the role of standards-based design and concludes by citing case studies that show the practicality of this analysis and associated policy prescriptions.


Dynamic spectrum access Industry openness Spectrum centralization System dynamics User-centric and operator-centric adoption scenarios 



This work has been partially funded by the End-to-End Cognitive Radio testbed project of Aalto University, which is part of the Tekes TRIAL program. Authors thank to Kalle Ruttik and to anonymous reviewers for their valuable comments.


  1. 1.
    Cisco. (2015). Cisco visual networking index: Global mobile data traffic forecast update, 2014–2019Google Scholar
  2. 2.
    Markendahl, J., & Casey, T. R. (2012). Business opportunities using white space spectrum and cognitive radio for mobile broadband services. In 2012 7th IEEE international ICST conference on cognitive radio oriented wireless networks and communications (CROWNCOM) (pp. 129–134).Google Scholar
  3. 3.
    Mitola, J. (2000). Cognitive radio: An integrated agent architecture for software defined radio, Doctoral thesis, KTH. Scientific American. 294(3) (pp. 66–73).Google Scholar
  4. 4.
    Howell, B., Meade, R., & O’Connor, S. (2010). Structural separation versus vertical integration: Lessons for telecommunications from electricity reforms. Telecommunications Policy, 34(2010), 392–403.CrossRefGoogle Scholar
  5. 5.
    Kim, J., Kim, Y., Gaston, N., Lestage, R., Kim, Y., & Flacher, D. (2011). Access regulation and infrastructure investment in the mobile telecommunications industry. Telecommunications Policy, 35(2011), 907–919.CrossRefGoogle Scholar
  6. 6.
    Li, Y., & Lyons, B. (2012). Market structure, regulation and the speed of mobile network penetration. International Journal of Industrial Organization, 30(2012), 697–707.CrossRefGoogle Scholar
  7. 7.
    Freyens, B. P., & Yerokhin, O. (2011). Allocative versus technical spectrum efficiency. Telecommunications Policy, 35(4), 291–300.CrossRefGoogle Scholar
  8. 8.
    Crocioni, P., & Franzoni, L. A. (2011). Transmitters and receivers’ investments to avoid interference: Is there an optimal regime? Telecommunications Policy, 35(6), 568–578.CrossRefGoogle Scholar
  9. 9.
    Caicedo, C. E. & Weiss, M. B. H. (2011). The viability of spectrum trading markets. IEEE Communications Magazine.Google Scholar
  10. 10.
    Ballon, P., & Delaere, S. (2009). Flexible spectrum and future business models for the mobile industry. Telematics and Informatics, 26(3), 249–258.CrossRefGoogle Scholar
  11. 11.
    Basaure, A., Marianov, V., & Paredes, R. (2014). Implications of dynamic spectrum management for regulation. Telecommunications Policy, 39(7), 563–579.CrossRefGoogle Scholar
  12. 12.
    Rogers, E. M. (2010). Adoption of innovations. New York: Simon and Schuster.Google Scholar
  13. 13.
    Damanpour, F. (1991). Organizational innovation: A meta-analysis of effects of determinants and moderators. Academy of Management Journal, 34(3), 555–590.CrossRefGoogle Scholar
  14. 14.
    Electronic Communications Committee (ECC). (2009). Light licensing, license-exempt and commons, report 132.Google Scholar
  15. 15.
    European Commission, EU COM (2012) 478. European economic and social committee, promoting the shared use of radio spectrum resources in the internal market, Brussels.Google Scholar
  16. 16.
    Holland, O., De Nardis, L., Nolan, K., Medeisis, A., Anker, P., Minervini, L.F., Velez, F., Matinmikko, M., Sydor, J. (2012). Pluralistic licensing. In IEEE international symposium on dynamic spectrum access networks.Google Scholar
  17. 17.
    Zhao, Q., & Sadler, B. M. (2007). A survey of dynamic spectrum access. IEEE Signal Processing Magazine, 24(3), 79–89.CrossRefGoogle Scholar
  18. 18.
    Matinmikko, M., Mustonen, M., Roberson, D., Paavola, J., Höyhtya, M., Yrjola, S., & Roning, J. (2014). Overview and comparison of recent spectrum sharing approaches in regulation and research: From opportunistic unlicensed access towards licensed shared access. In IEEE international symposium on dynamic spectrum access networks (DYSPAN) (pp. 92–102).Google Scholar
  19. 19.
    Medeisis, A., & Minervini, L. F. (2013). Stalling innovation of cognitive radio: The case for a dedicated frequency band. Telecommunications Policy, 37, 108–115.CrossRefGoogle Scholar
  20. 20.
    Warma, H., Levä, T., Tripp, H., Ford, A., & Kostopoulos, A. (2011). Dynamics of communication protocol diffusion: The case of multipath TCP. NETNOMICS: Economic Research and Electronic Networking, 12(2), 133–159.CrossRefGoogle Scholar
  21. 21.
    Miranda, L., & Lima, C. A. (2013). Technology substitution and innovation adoption: The cases of imaging and mobile communication markets. Technological Forecasting and Social Change, 80(6), 1179–1193.CrossRefGoogle Scholar
  22. 22.
    Kim, M.-S., & Kim, H. (2007). Is there early take-off phenomenon in adoption of IP-based telecommunications services? Omega, 35(2007), 727–739.CrossRefGoogle Scholar
  23. 23.
    Michalakelis, C., Varoutas, D., & Sphicopoulos, T. (2010). Innovation adoption with generation substitution effects. Technological Forecasting & Social Change, 77(2010), 541–557.CrossRefGoogle Scholar
  24. 24.
    Grajek, M., & Kretschmer, T. (2012). Identifying critical mass in the global cellular telephony market. International Journal of Industrial Organization, 30(2012), 496–507.CrossRefGoogle Scholar
  25. 25.
    Xiao, J., Hu, R., Qian, Y., Gong, L., & Wang, B. (2013). Expanding LTE network spectrum with cognitive radios: From concept to implementation. IEEE Wireless Communications, 20(2), 12–19.CrossRefGoogle Scholar
  26. 26.
    Flores, A. B., Guerra, R. E., Knightly, E. W., Ecclesine, P., & Pandey, S. (2013). IEEE 802.11 af: A standard for TV white space spectrum sharing. IEEE Communications Magazine, 51(10), 92–100.CrossRefGoogle Scholar
  27. 27.
    Lei, Z., & Shellhammer, S. J. (2009). IEEE 802.22: The first cognitive radio wireless regional area network standard. IEEE Communications Magazine, 47(1), 130–138.CrossRefGoogle Scholar
  28. 28.
    Zhang, Y., Yu, R., Nekovee, M., Liu, Y., Xie, S., & Gjessing, S. (2012). Cognitive machine-to-machine communications: visions and potentials for the smart grid. IEEE Network, 26(3), 6–13.CrossRefGoogle Scholar
  29. 29.
    Manusco, A., Probasco, L., & Patil, B. (2013). Protocol to access white space (PAWS) database: Use cases and requirements. Internet-draft.Google Scholar
  30. 30.
    Ghosh, S., Naik, G., Kumar, A., & Karandikar, A. (2015, February). OpenPAWS: An open source PAWS and UHF TV white space database implementation for India. In IEEE twenty first national conference on communications (NCC) (pp. 1–6).Google Scholar
  31. 31.
    Paavola, J., & Kivinen, A. (2014). Device authentication architecture for TV white space systems. In IEEE 9th international conference on cognitive radio oriented wireless networks and communications (CROWNCOM) (pp. 460-465).Google Scholar
  32. 32.
    Mueck, M. (2014). Standardisation for reconfigurable radio systems: where we are. ETSI workshop on reconfigurable radio systems. Presentation accessed in July 2015. Retrieved December 3 from
  33. 33.
    Palola, M., Matinmikko, M., Prokkola, J., Mustonen, M., Heikkila, M., Kippola, T., \(\ldots \), Heiska, K. (2014). Live field trial of Licensed Shared Access (LSA) concept using LTE network in 2.3 GHz band. In IEEE international symposium on dynamic spectrum access networks (DYSPAN) (pp. 38–47).Google Scholar
  34. 34.
    4G Americas. LTE carrier aggregation: Technology development and deployment worldwide. Retrieved October 2014. Accesses in July 2015 from
  35. 35.
    Yuan, G., Zhang, X., Wang, W., & Yang, Y. (2010). Carrier aggregation for LTE-advanced mobile communication systems. IEEE Communications Magazine, 48(2), 88–93.CrossRefGoogle Scholar
  36. 36.
    Alkhansa, R., Artail, H., & Gutierrez-Estevez, D. M. (2014). LTE-WiFi carrier aggregation for future 5G systems: A feasibility study and research challenges. Procedia Computer Science, 34, 133–140.CrossRefGoogle Scholar
  37. 37.
    Lin, X., Andrews, J., Ghosh, A., & Ratasuk, R. (2014). An overview of 3GPP device-to-device proximity services. IEEE Communications Magazine, 52(4), 40–48.CrossRefGoogle Scholar
  38. 38.
    Webb, W. (2012). Weightless: The technology to finally realise the m2m vision. International Journal of Interdisciplinary Telecommunications and Networking (IJITN), 4(2), 30–37.CrossRefGoogle Scholar
  39. 39.
    Sridhar, V., Casey, T., & Hämmäinen, H. (2013). Flexible spectrum management for mobile broadband services: How does it vary across advanced and emerging markets? Telecommunications Policy Special Issue on Cognitive Radio, 37, 178–191.CrossRefGoogle Scholar
  40. 40.
    Shy, Oz. (2004). Economics of network industries. Cambridge: Cambridge University Press.Google Scholar
  41. 41.
    Jang, S.-L., Dai, S.-C., & Sung, S. (2005). The pattern and externality effect of diffusion of mobile telecommunications: The case of the OECD and Taiwan. Information Economics and Policy, 17(2005), 133–148.CrossRefGoogle Scholar
  42. 42.
    Mahajan, V., Muller, E., & Bass, F. (1993). New-product adoption models. In Handbook in operations research and management science, Chapter 8, Marketing (Vol. 5). Amsterdam: North Holland.Google Scholar
  43. 43.
    Gurbaxani, V. (1990). Adoption in computing networks: The case of BITNET. Communications of the ACM, 33, 65–75.CrossRefGoogle Scholar
  44. 44.
    Economides, N., & Himmelberg, C. P. (1995). Critical mass and network size with application to the US fax market. NYU Stern School of Business EC-95-11.Google Scholar
  45. 45.
    Mak, V., & Zwick, R. (2010). Investment decisions and coordination problems in a market with network externalities: An experimental study. Journal of Economic Behavior & Organization, 76(2010), 759–773.CrossRefGoogle Scholar
  46. 46.
    Norton, J. A., & Bass, F. M. (1987). A diffusion theory model of adoption and substitution for successive generations of high-technology products. Management Science, 33(9), 1069–1086.CrossRefGoogle Scholar
  47. 47.
    Modis, T. (2003). A scientific approach to managing competition. The Industrial Physicist, 9(1), 24–27.Google Scholar
  48. 48.
    Pistorius, C. & Utterback, J. (1996). A Lotka-Volterra model for multi-mode technological interaction: Modeling competition, symbiosis and predator prey modes. Sloan school of management, MIT, WP # 3929.Google Scholar
  49. 49.
    Kucharavy, D., & De Guio, R. (2011). Application of S-shaped curves. Procedia Engineering, 9, 559–572.CrossRefGoogle Scholar
  50. 50.
    Casey, T., & Töyli, J. (2012). Mobile voice adoption and service competition: A system dynamic analysis of regulatory policy. Telecommunications Policy, 36, 162–174.CrossRefGoogle Scholar
  51. 51.
    Funk, J. L. (2011). Standards, critical mass, and the formation of complex industries: A case study of the mobile Internet. Journal of Engineering and Technology Management, 28(4), 232–248.CrossRefGoogle Scholar
  52. 52.
    Shin, D. H., & Bartolacci, M. (2007). A study of MVNO adoption and market structure in the EU, US, Hong Kong, and Singapore. Telematics and Informatics, 24(2), 86–100.CrossRefGoogle Scholar
  53. 53.
    Stigler, G. J. (1983). The organization of industry. Economics books. Chicago: University of Chicago Press.Google Scholar
  54. 54.
    Park, Eun-A. (2009). Explicating barriers to entry in the telecommunications industry. Info, 11(1), 34–51. doi: 10.1108/14636690910932984.CrossRefGoogle Scholar
  55. 55.
    Demsetz, H. (1982). Barriers to entry. The American Economic Review, 47-57Google Scholar
  56. 56.
    Suomi, H., Basaure, A., & Hämmäinen, H. (2013). Effects of capacity sharing on mobile access competition. In Proceeding capacity sharing workshop (CSWS’13) Google Scholar
  57. 57.
    Coase, R. H. (1937). The nature of the firm. Economica, 4(16), 386–405.CrossRefGoogle Scholar
  58. 58.
    Klein, B., Crawford, R. & Alchian, A. (1978) Vertical integration, appropriable rents, and the competitive contracting process. Journal of Law and Economics, 297–321Google Scholar
  59. 59.
    Klemperer, P. (1995). Competition when consumers have switching costs: An overview with applications to industrial organization, macroeconomics, and international trade. Review of Economic Studies, 62, 515–539.CrossRefGoogle Scholar
  60. 60.
    Beard, T., Ford, G., Spiwak, L., & Stern, M. (2010). A policy framework for spectrum allocation in mobile communications. Federal Communications Law Journal, 62, 630.Google Scholar
  61. 61.
    Lundborg, M., Reichl, W., & Ruhle, E.-O. (2012). Spectrum allocation and its relevance for competition. Telecommunications Policy, 36(2012), 664–675.CrossRefGoogle Scholar
  62. 62.
    Hazlett, T. W. (2008). Property rights and wireless license values. 51 journal of law & economics 563–98Google Scholar
  63. 63.
    Freyens, B. P. (2010). Shared or exclusive radio waves? A dilemma gone astray. Telematics and Informatics, 27(3), 293–304.CrossRefGoogle Scholar
  64. 64.
    European Communications Office. (2012). ECO report 03: The licensing of mobile bands in CEPT.Google Scholar
  65. 65.
    Prasad, R., & Sridhar, V. (2008). Optimal number of mobile service providers in India: Trade-off between efficiency and competition. International Journal of Business Data Communications and Networking, 4(3), 69–81.CrossRefGoogle Scholar
  66. 66.
    Mayo, J., & Wallsten, S. (2010). Enabling efficient wireless communications: The role of secondary spectrum markets. Information Economics and Policy, 22(2010), 61–72.CrossRefGoogle Scholar
  67. 67.
    Telecommunications Regulatory Authority of India (TRAI). (2014a). Recommendations on working guidelines for spectrum trading. Retrieved from Accessed on 15th July 2014.
  68. 68.
    Telecommunications Regulatory Authority of India (TRAI). (2014b). Recommendations on guidelines on spectrum sharing. Retrieved from Accessed on 25th July 2014.
  69. 69.
    Sridhar, V., & Prasad, R. (2011). Towards a new policy framework for spectrum management in India. Telecommunications Policy, 35, 172–184. doi: 10.1016/j.telpol.2010.12.004.CrossRefGoogle Scholar
  70. 70.
    Fransman, M. (2010). The new ICT ecosystem: Implications for Europe. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  71. 71.
    Arthur, W. B. (2009). The nature of technology: What it is and how it evolves. New York: The Free Press.Google Scholar
  72. 72.
    Forrester, J. W. (1958). Industrial dynamics: A major breakthrough for decision makers. Harvard Business Review, 36(4), 37–66.Google Scholar
  73. 73.
    Tookey, A., Whalley, J., & Howick, S. (2006). Broadband adoption in remote and rural Scotland. Telecommunications Policy, 30, 481–495.CrossRefGoogle Scholar
  74. 74.
    Davies, J., Howell, B. E., & Mabin, V. (2008). Telecom Regulation, regulatory behaviour and its impact—a system view. Communications & Strategies, 70, 145.Google Scholar
  75. 75.
    Lin, M.-S., & Wu, F.-S. (2013). Identifying the determinants of broadband adoption by adoption stage in OECD countries. Telecommunications Policy, 37, 241–251.CrossRefGoogle Scholar
  76. 76.
    Rouvinen, P. (2006). Adoption of digital mobile telephony: Are developing countries different? Telecommunications Policy, 30, 46–63.CrossRefGoogle Scholar
  77. 77.
    Verbeke, W., Dejaeger, K., Martens, D., Hur, J., & Baesens, B. (2012). New insights into churn prediction in the telecommunication sector: A profit driven data mining approach. European Journal of Operational Research, 218, 211–229.CrossRefGoogle Scholar
  78. 78.
    Scholl, H. J. (2001). Agent-based and system dynamics modeling: A call for cross study and joint research. In Proceedings of the IEEE 34th annual hawaii international conference on system sciences(p. 8).Google Scholar
  79. 79.
    Sterman, John D. (2000). Business dynamics: system thinking and modeling for a complex world. Chapter 10: Path dependence and positive feedback. McGraw-Hill.Google Scholar
  80. 80.
    Ahmadian, A. (2008). System dynamics and technological innovation system-models of multi-technology substitution processes. Masters’ thesis. Chalmers University of Technology.Google Scholar
  81. 81.
    Aghion, P., Bloom, N., Blundell, R., Griffith, R. & Howitt, P. (2002). Competition and innovation: An inverted U relationship (No. w9269). National Bureau of Economic Research.Google Scholar
  82. 82.
    Scherer, F. M. (1967). Market structure and the employment of scientists and engineers. The American Economic Review, 524–531.Google Scholar
  83. 83.
    Sacco, D., & Schmutzler, A. (2011). Is there a U-shaped relation between competition and investment? International Journal of Industrial Organization, 29(1), 65–73.CrossRefGoogle Scholar
  84. 84.
    Bauer, J. M. (2010). Regulation, public policy, and investment in communications infrastructure. Telecommunications Policy, 34(1), 65–79.CrossRefGoogle Scholar
  85. 85.
    Mansfield, E. (1961). Technical change and the rate of imitation. Econometrica, 29(4), 741–766.CrossRefGoogle Scholar
  86. 86.
    Lin, C. S. (2013). Forecasting and analyzing the competitive diffusion of mobile cellular broadband and fixed broadband in Taiwan with limited historical data. Economic Modelling, 35, 207–213.CrossRefGoogle Scholar
  87. 87.
    Baláž, V., & Williams, A. M. (2012). Diffusion and competition of voice communication technologies in the Czech and Slovak Republics, 1948–2009. Technological Forecasting and Social Change, 79(2), 393–404.CrossRefGoogle Scholar
  88. 88.
    FICORA (2010). Raportti: Radiotaajuuksien kysyntä tulevaisuudessa. Accesses in August 2014 from
  89. 89.
    Electronic Communications Committee (ECC). (2005). ECC report 65. Auctions and beauty contests in CEPT administrations. Brijuni.Google Scholar
  90. 90.
    Tallberg, M., Hammainen, H., Töyli, J., Kamppari, S., & Kivi, A. (2007). Impacts of handset bundling on mobile data usage: The case of Finland. Telecommunications Policy, 31(2007), 648–659.CrossRefGoogle Scholar
  91. 91.
    Liikenne- ja viestintäministeriö. Tiedote 20.1.2014: DNA:lle ja TeliaSoneralle lupa taajuuksien yhteiskäyttöön. Accessed in April 2015 from
  92. 92.
    Prasad, R., & Sridhar, V. (2014). The dynamics of spectrum management: legacy, technology, and economics. Oxford University Press, ISBN-13: 978-0-19-809978-9; ISBN-10: 0–19-809978-9.Rogers, E. M. (2003). Adoption of innovations (5th ed.). New York: Free Press.Google Scholar
  93. 93.
    Nielsen Study. (2012). Nielsen featured insights: The rise of multi-SIM users: Customers shifting to dual SIM phones to have effective control over costs. Accessed in August 2014 from
  94. 94.
    GSMA. (2013). Official document 12 FAST.13—Embedded SIM remote provisioning architecture, Version 1.1, 17.Google Scholar
  95. 95.
    Faulhaber, G. R., Hahn, R. W., & Singer, H. J. (2011). Assessing competition in US wireless markets: Review of the FCC’s competition reports. Federal Communications Law Journal, 64, 319.Google Scholar
  96. 96.
    OECD. (2011). OECD communications outlook 2011. OECD publishing.
  97. 97.
    ITU-D. (2012). Yearbook of statistics, telecommunication/ICT indicators 2002–2011Google Scholar
  98. 98.
    Global Wireless Matrix. (2011). Bank of America, Merrill Lynch, industry overview.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Communications and NetworkingAalto University School of Electrical EngineeringAaltoFinland
  2. 2.Department of Industrial and Systems EngineeringPontificia Universidad Católica de ChileMaculChile
  3. 3.Centre for Information Technology and Public Policy (CITAPP) International Institute of Information Technology BangaloreBangaloreIndia

Personalised recommendations