Telecommunication Systems

, Volume 60, Issue 2, pp 337–345 | Cite as

RViz: a toolkit for real domain data visualization

  • Hyeong Ryeol Kam
  • Sung-Ho Lee
  • Taejung Park
  • Chang-Hun Kim
Article

Abstract

In computational science and computer graphics, there is a strong requirement to represent and visualize information in the real domain, and many visualization data structures and algorithms have been proposed to achieve this aim. Unfortunately, the dataflow model that is often selected to address this issue in visualization systems is not flexible enough to visualize newly invented data structures and algorithms because this scheme can accept only specific data structures. To address this problem, we propose a new visualization tool, RViz, which is independent of the input information data structures. Since there is no requirement for additional efforts to manage the flow networks and the interface to abstracted information is simple in RViz, any scientific information visualization algorithms are easier to implement than the dataflow model. In this paper, we provide case studies in which we have successfully implemented new data structures and related algorithms using RViz, including geometry synthesis, distance field representation, and implicit surface reconstruction. Through these cases, we show how RViz helps users visualize and understand any hidden insights in input information.

Keywords

Spatial data visualization Visualization toolkit Decorator pattern Lightweight framework 

References

  1. 1.
    Bærentzen, J. A., & Christensen, N. J. (2001). A technique for volumetric CSG based on morphology. In Proceedings of the International Workshop on Volume Graphics (pp.71–79).Google Scholar
  2. 2.
    Benson, D., & Davis, J. (2002). Octree textures. ACM Transactions on Graphics, 21, 785–790.CrossRefGoogle Scholar
  3. 3.
    Childs, H., Brugger, E., Bonnell, K., Meredith, J., Miller, M. & Whitlock, B., et al. (2005). A contract based system for large data visualization. IEEE Visualization, 25.Google Scholar
  4. 4.
    Cook, R. L. (1986). Stochastic sampling in computer graphics. ACM Transactions on Graphics (TOG), 5, 51–72.CrossRefGoogle Scholar
  5. 5.
    Frisken, S.F., Perry, R.N., Rockwood, A.P., & Jones, T.R. (2000). Adaptively sampled distance fields: a general representation of shape for computer graphics. ACM SIGGRAPH (249–254).Google Scholar
  6. 6.
    Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns: Elements of reusable object-oriented software. Boston: Addison-Wesley Longman Publishing Co., Inc.Google Scholar
  7. 7.
    Groovy community. Groovy programming language. http://groovy.codehaus.org
  8. 8.
    Guendelman, E., Bridson, R., & Fedkiw, R. (2003). Nonconvex rigid bodies with stacking. ACM Transactions on Graphics, 22, 871–878.CrossRefGoogle Scholar
  9. 9.
    Hachisuka, T., Ogaki, S., & Jensen, H. W. (2008). Progressive photon mapping. ACM Transactions on Graphics, 27, 130:1– 130:8.Google Scholar
  10. 10.
    Hart, J. C. (1996). Sphere tracing: a geometric method for the antialiased ray tracing of implicit surfaces. The Visual Computer, 12(10), 527–545.CrossRefGoogle Scholar
  11. 11.
    Heer, J., & Agrawala, M. (2006). Software design patterns for information visualization. IEEE Transaction on Visualization and Computer Graphics, 12, 853–860.CrossRefGoogle Scholar
  12. 12.
    Heer, J., Card, S.K. & Landay, J.A. (2005). Prefuse: a toolkit for interactive information visualization. In Proceedings of SIGCHI conference on Human factors in computing systems (pp. 421–430).Google Scholar
  13. 13.
  14. 14.
    Kitware. Visualization toolkit. http://www.vtk.org
  15. 15.
    Koop, D., Scheidegger, C. E., Callahan, S. P., Freire, J., & Silva, C. T. (2008). VisComplete: automating suggestions for visualization pipelines. IEEE Transaction on Visualization and Computer Graphics, 14(6), 1691–1698.CrossRefGoogle Scholar
  16. 16.
    Park, T., Lee, S.-H., & Kim, C.-H. (2011). Analytic Solutions of Integral Moving Least Squares for Polygon Soups. PrePrint: IEEE transactions on Visualization and Computer Graphics.Google Scholar
  17. 17.
    Lee, S. -H., Park, T. & Kim, C. -H. (2011). Primitive Trees for Precomputed Distance Queries. Technical paper.Google Scholar
  18. 18.
    Lee, S. -H., Park, T., Kim, J. -H., & Kim, C. -H. (2011). Adaptive synthesis of distance fields. PrePrint: IEEE transactions on Visualization and Computer Graphics.Google Scholar
  19. 19.
    Lefebvre, S., & Hoppe, H. (2005). Parallel controllable texture synthesis. Transactions on Graphics, 24(3), 777–786.CrossRefGoogle Scholar
  20. 20.
    Lefebvre, S., & Hoppe, H. (2007). Compressed random-access trees for spatially coherent data. In Proceedings Eurographics Symp. on Rendering.Google Scholar
  21. 21.
    Losasso, F., Gibou, F., & Fedkiw, R. (2004). Simulating water and smoke with an octree data structure. ACM Transactions on Graphics, 23, 457–462.CrossRefGoogle Scholar
  22. 22.
    MeVis. MeVisLab: A development environment for medical image processing and visualization. http://www.MeVisLab.de
  23. 23.
    Occam, William of. Occam’s razor. http://en.wikipedia.org/wiki/Occam%27s_razor
  24. 24.
    Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., & Seidel, H.-P. (2003). Multi-level partition of unity implicits. ACM SIGGRAPH, 22(3), 463–470.CrossRefGoogle Scholar
  25. 25.
    Park, T., Lee, S. -H., Kim, J. -H. & Kim, C. -H. (2010). Cuda-based signed distance field calculation for adaptive grids. In Proceedings of the IEEE International Conference on Computer and Information Technology (pp.1202–1206).Google Scholar
  26. 26.
    Pollak, D. (2009). Beginning Scala. Dordrecht: Springer.CrossRefGoogle Scholar
  27. 27.
    Reshetov, A., Soupikov, A., & Hurley, J. (2005). Multi-level ray tracing algorithm. ACM SIGGRAPH, 24, 1176–1185.Google Scholar
  28. 28.
    Scala development team. Scala programming language. http://scala-lang.org
  29. 29.
    Schroeder, W.J., Martin, K.M. & Lorensen W.E. (1996). The design and implementation of an object-oriented toolkit for 3d graphics and visualization. IEEE Visualization, PP. 93–100.Google Scholar
  30. 30.
    Scientific Computing and Imaging Institute (SCI). SCIRun: A scientific computing problem solving environment. http://www.scirun.org
  31. 31.
    Shen, C., O’Brien, J.F. & Shewchuk, J.R. (2004) Interpolating and approximating implicit surfaces from polygon soup. In ACM SIGGRAPH (pp.896–904).Google Scholar
  32. 32.
    Sud, A., Govindaraju, N.K., Gayle, R. & Manocha D. (2006). Interactive 3d distance field computation using linear factorization. In Proceedings of the ACM symposium on Interactive 3D Graph. and Games (SI3D) (pp. 117–124).Google Scholar
  33. 33.
    Takatsuka, M., & Gahegan, M. (2002). GeoVISTA Studio: A codeless visual programming environment for geoscientific data analysis and visualization. Computational Geoscience, 28, 1131–1144.CrossRefGoogle Scholar
  34. 34.
    Upson, C., Faulhaber, Jr., T., Kamins, D., Laidlaw, D.H., Schlegel, D., Vroom, J., Gurwitz, R. & van Dam A. The application visualization.Google Scholar
  35. 35.
    Wald, I., Günther, J. & Slusallek P. (2004). Balancing considered harmful - faster photon mapping using the voxel volume heuristic. Computer Graph. Forum, 22(3).Google Scholar
  36. 36.
    Wald, I., Mark, W. R., Günther, J., Boulos, S., Ize, T., Hunt, W., et al. (2009). State of the art in ray tracing animated scenes. Computer Graphics Forum, 28(6), 1691–1722.CrossRefGoogle Scholar
  37. 37.
    Walrath, K., Campione, M., Huml, A., & Zakhour, S. (2004). The JFC swing tutorial: A guide to constructing GUIs. Redwood City: AddisonWesley Longman Publishing Co., Inc..Google Scholar
  38. 38.
    Wei, L.-Y., Lefebvre, S., Kwatra, V. & Turk G. (2009). State of the art in example-based texture synthesis. In Eurographics 2009, State of the Art Report.Google Scholar
  39. 39.
    Wu J., Kobbelt L. (2003). Piecewise linear approximation of signed distance fields. In Proceedings of the Vision, Modeling, and Visualization (pp.513–520).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Hyeong Ryeol Kam
    • 2
  • Sung-Ho Lee
    • 3
  • Taejung Park
    • 4
  • Chang-Hun Kim
    • 1
  1. 1.Department of Computer and Radio Communications EngineeringKorea UniversitySeoulKorea
  2. 2.Department of Visual Information ProcessingKorea UniversitySeoulKorea
  3. 3.Onsquare Co.SeoulKorea
  4. 4.Department of Digital MediaDuksung Women’s UniversitySeoulKorea

Personalised recommendations