Advertisement

Telecommunication Systems

, Volume 61, Issue 3, pp 417–432 | Cite as

Quality assessment and usage behavior of a mobile voice-over-IP service

  • Toon De PessemierEmail author
  • Isabelle Stevens
  • Lieven De Marez
  • Luc Martens
  • Wout Joseph
Article

Abstract

Voice-over-IP (VoIP) services offer users a cheap alternative to the traditional mobile operators to make voice calls. Due to the increased capabilities and connectivity of mobile devices, these VoIP services are becoming increasingly popular on the mobile platform. Understanding the user’s usage behavior and quality assessment of the VoIP service plays a key role in optimizing the Quality of Experience (QoE) and making the service to succeed or to fail. By analyzing the usage and quality assessments of a commercial VoIP service, this paper identifies device characteristics, context parameters, and user aspects that influence the usage behavior and experience during VoIP calls. Whereas multimedia services are traditionally evaluated by monitoring usage and quality for a limited number of test subjects and during a limited evaluation period, this study analyzes the service usage and quality assessments of more than thousand users over a period of 120 days. This allows to analyze evolutions in the usage behavior and perceived quality over time, which has not been done up to now for a widely-used, mobile, multimedia service. The results show a significant evolution over time of the number of calls, the call duration, and the quality assessment. The time of the call, the used network, and handovers during the call showed to have a significant influence on the users’ quality assessments.

Keywords

Usage behavior User experience  Voice-over-IP  Mobile Quality assessment 

References

  1. 1.
    About.com (2013). What Affects Voice Quality in VoIP Calls (2013). Retrieved July 5, 2013, from http://voip.about.com/od/voipbasics/a/factorsquality.htm
  2. 2.
    Agboma, F., & Liotta, A. (2012). Quality of experience management in mobile content delivery systems. Telecommunication Systems, 49(1), 85–98. doi: 10.1007/s11235-010-9355-6.CrossRefGoogle Scholar
  3. 3.
    Alvarez-Flores, E., Ramos-Munoz, J., Ameigeiras, P., & Lopez-Soler, J. (2011). Selective packet dropping for voip and tcp flows. Telecommunication Systems, 46(1), 1–16. doi: 10.1007/s11235-009-9252-z.CrossRefGoogle Scholar
  4. 4.
    Benaissa, M., Lecuire, V., Lepage, F., & Schaff, A. (2005). Efficient de-jitter control for voice applications over wireless ad hoc networks. Telecommunication Systems, 28(2), 211–230. doi: 10.1007/s11235-004-5017-x.CrossRefGoogle Scholar
  5. 5.
    Business Advisory Support (2013). The Growing Popularity of Hosted VoIP. Retrieved July 5, 2013, from http://www.advisorysupport.co.uk/the-growing-popularity-of-hosted-voip/
  6. 6.
    Cano, M. D., & Cerdan, F. (2012). Subjective QoE analysis of voip applications in a wireless campus environment. Telecommunication Systems, 49(1), 5–15. doi: 10.1007/s11235-010-9348-5.CrossRefGoogle Scholar
  7. 7.
    Cardeal, S., Neves, F., Soares, S., Tavares, F., & Assuncao, P. (2011). Arqos : \({\textregistered } \)System to monitor qos/qoe in voip. In: Proceedings of the EUROCON—International Conference on Computer as a Tool (EUROCON), 2011, pp. 1–2. IEEE. doi: 10.1109/EUROCON.2011.5929310.
  8. 8.
    Ciszkowski, T., Mazurczyk, W., Kotulski, Z., Hofeld, T., Fiedler, M., & Collange, D. (2012). Towards quality of experience-based reputation models for future web service provisioning. Telecommunication Systems, 51(4), 283–295. doi: 10.1007/s11235-011-9435-2.CrossRefGoogle Scholar
  9. 9.
    De Pessemier, T., De Moor, K., Joseph, W., De Marez, L., & Martens, L. (2012). Quantifying subjective quality evaluations for mobile video watching in a semi-living lab context. IEEE Transactions on Broadcasting, 58(4), 580–589. doi: 10.1109/TBC.2012.2199590.CrossRefGoogle Scholar
  10. 10.
    De Pessemier, T., De Moor, K., Joseph, W., De Marez, L., & Martens, L. (2013). Quantifying the influence of rebuffering interruptions on the user’s quality of experience during mobile video watching. IEEE Transactions on Broadcasting, 59(1), 47–61. doi: 10.1109/TBC.2012.2220231.CrossRefGoogle Scholar
  11. 11.
    De Pessemier, T., De Moor, K., Ketykó, I., Joseph, W., De Marez, L., & Martens, L. (2012). Investigating the influence of qos on personal evaluation behaviour in a mobile context. Multimedia Tools and Applications, 57(2), 335–358. doi: 10.1007/s11042-010-0712-y.CrossRefGoogle Scholar
  12. 12.
    Geerts, D., De Moor, K., Ketykó, I., Jacobs, A., Van den Bergh, J., Joseph, W., Martens, L., & De Marez, L. (2010). Linking an integrated framework with appropriate methods for measuring qoe. In: Proceedings of the Quality of Multimedia Experience (QoMEX), 2010 Second International Workshop on, pp. 158–163. doi: 10.1109/QOMEX.2010.5516292.
  13. 13.
    Giannakidou, E., Koutsonikola, V., Vakali, A., & Kompatsiaris, I. (2012). In & out zooming on time-aware user/tag clusters. Journal of Intelligent Information Systems, 38(3), 685–708. doi: 10.1007/s10844-011-0173-4.CrossRefGoogle Scholar
  14. 14.
    Hoßfeld, T., & Binzenhöfer, A. (2008). Analysis of skype voip traffic in umts: End-to-end qos and qoe measurements. Computer Networks 52(3), 650–666. doi: 10.1016/j.comnet.2007.10.008 http://www.sciencedirect.com/science/article/pii/S138912860700299X
  15. 15.
    Huang, T. Y., Huang, P., Chen, K. T., & Wang, P. J. (2010). Could skype be more satisfying? A QoE-centric study of the fec mechanism in an internet-scale voip system. IEEE Network, 24(2), 42–48. doi: 10.1109/MNET.2010.5430143.CrossRefGoogle Scholar
  16. 16.
    International Telecommunication Union (2007). Definition of Quality of Experience (QoE). Liaison statement, ITU-T, International Telecommunication Union Ref.: TD 109 rev 2 (PLEN/12).Google Scholar
  17. 17.
    Jammeh, E., Mkwawa, I., Khan, A., Goudarzi, M., Sun, L., & Ifeachor, E. (2012). Quality of experience (QoE) driven adaptation scheme for voice/video over ip. Telecommunication Systems, 49(1), 99–111. doi: 10.1007/s11235-010-9356-5.CrossRefGoogle Scholar
  18. 18.
    Jelassi, S., Youssef, H., Hoene, C., & Pujolle, G. (2012). Single-ended parametric voicing-aware models for live assessment of packetized voip conversations. Telecommunication Systems, 49(1), 17–34. doi: 10.1007/s11235-010-9350-y.CrossRefGoogle Scholar
  19. 19.
    Karapanos, E., Zimmerman, J., Forlizzi, J., & Martens, J. B. (2009). User experience over time: An initial framework. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’09, pp. 729–738. New York, NY: ACM. doi: 10.1145/1518701.1518814.
  20. 20.
    Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (2005). Applied linear statistical models (5th ed.). New York, NY: McGraw-Hill.Google Scholar
  21. 21.
    Lambrinos, L., & Djouvas, C. (2013). Improving quality of experience in wireless voip through novel call scheduling. Telecommunication Systems, 52(4), 1905–1916. doi: 10.1007/s11235-011-9473-9.CrossRefGoogle Scholar
  22. 22.
    Li, X., Toseef, U., Dulas, D., Bigos, W., Görg, C., Timm-Giel, A., et al. (2013). Dimensioning of the lte access network. Telecommunication Systems, 52(4), 2637–2654. doi: 10.1007/s11235-011-9593-2.CrossRefGoogle Scholar
  23. 23.
    Llamas, R., Reith, R., & Shirer, M. (2013). Apple Cedes Market Share in Smartphone Operating System Market as Android Surges and Windows Phone Gains, According to IDC. IDC—Press Release (2013). Retrieved August 26, 2013, from http://www.idc.com/getdoc.jsp?containerId=prUS24257413.
  24. 24.
    Manousos, M., Apostolacos, S., Grammatikakis, I., Mexis, D., Kagklis, D., & Sykas, E. (2005). Voice-quality monitoring and control for voip. IEEE Internet Computing, 9(4), 35–42. doi: 10.1109/MIC.2005.92.CrossRefGoogle Scholar
  25. 25.
    Nováková, L., & Štepánková, O. (2011). Visualization of trends using radviz. Journal of Intelligent Information Systems, 37(3), 355–369. doi: 10.1007/s10844-011-0157-4.CrossRefGoogle Scholar
  26. 26.
    Palmieri, F. (2006). Large scale voice over ip experiences on high performance intranets. In S. Chaudhuri, S. Das, H. Paul, & S. Tirthapura (Eds.), Lecture Notes in Computer Science, Distributed Computing and Networking (vol. 4308, pp. 355–366). Berlin: Springer.Google Scholar
  27. 27.
    Princeton University: Pareto distribution (2013). Retrieved August 27, 2013, from http://www.princeton.edu/achaney/tmve/wiki100k/docs/Paretodistribution.html.
  28. 28.
    Rajaraman, S. (2009). Five Stars Dominate Ratings. YouTube Official Blog. Retrieved July 15, 2013 from, http://youtube-global.blogspot.be/2009/09/five-stars-dominate-ratings.html
  29. 29.
    Reiter, U. (2011). Overall perceived audiovisual quality: What people pay attention to. In: Proceedings of the IEEE 15th International Symposium on Consumer Electronics 2011 (ISCE), pp. 513–517. doi: 10.1109/ISCE.2011.5973883.
  30. 30.
    Rowe, L. A., & Jain, R. (2005). Acm SIGMM retreat report on future directions in multimedia research. ACM Transactions on Multimedia Computing, Communications, and Applications, 1(1), 3–13. doi: 10.1145/1047936.1047938.CrossRefGoogle Scholar
  31. 31.
    Soldani, D., Li, M., & Cuny, R. (2006). QoS and QoE Management in UMTS Cellular Systems (pp. 1–27). Chichester: John Wiley.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Toon De Pessemier
    • 1
    Email author
  • Isabelle Stevens
    • 2
  • Lieven De Marez
    • 2
  • Luc Martens
    • 1
  • Wout Joseph
    • 1
  1. 1.Department of Information Technology, iMinds - WiCaGhent UniversityGhentBelgium
  2. 2.Department of Communication Sciences, iMinds - MICTGhent UniversityGhentBelgium

Personalised recommendations