Advertisement

Telecommunication Systems

, Volume 61, Issue 3, pp 403–415 | Cite as

Analysis of the BMAP/G/1 queue with gated service and adaptive vacations duration

  • Alexander N. DudinEmail author
  • Vladimir M. Vishnevsky
  • Julia V. Sinjugina
Article

Abstract

We consider a BMAP/G/1 type queueing model with gated service and duration of vacations depending on how many times in turn the system was empty at the previous vacation completion moments. We compute stationary distributions of the queue length at the embedded moments (vacation completions) and at arbitrary time as well as of a customer waiting time. The results of our analysis can be useful for determining strategy of adaptive choosing duration of sleep periods, e.g., in mobile networks where power consumption is an important issue.

Keywords

Performance Queues applications  Queues theory  Telecommunications 

Notes

Acknowledgments

The research is supported by the Russian Foundation for Basic Research (grant no. 14-07-90015) and the Belarusian Republican Foundation for Fundamental Research (grant no. F14R-126).

References

  1. 1.
    Abbas, C. B., Gonzlez, R., Cardenas, N., & Villalba, L. J. G. (2008). A proposal of a wireless sensor network routing protocol. Telecommunication Systems, 38, 61–68.CrossRefGoogle Scholar
  2. 2.
    Baek, S., Son, J. J., & Choi, B. D. (2011). Performance analysis of Push-To-Talk over IEEE 802.16e with sleep mode and idle mode. Telecommunication Systems, 47(3–4), 291–302.CrossRefGoogle Scholar
  3. 3.
    Chakravarthy, S. R. (2001). The batch Markovian arrival process: A review and future work. In A. Krishnamoorthy, et al. (Eds.), Advances in probability theory and stochastic process: Proc (pp. 21–49). Branchburg, NJ: Notable Publications.Google Scholar
  4. 4.
    Cinlar, E. (1975). Introduction to stochastic process. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  5. 5.
    Heyman, D. P., & Lucantoni, D. (2003). Modelling multiple IP traffic streams with rate limits. IEEE/ACM Transactions on Networking, 11, 948–958.CrossRefGoogle Scholar
  6. 6.
    Hurni, P., Braun, T., & Anwander, M. (2010). Evaluation of WiseMAC and extensions on wireless sensor nodes. Telecommunication Systems, 43, 49–58.CrossRefGoogle Scholar
  7. 7.
    Hwang, E., Kim, K. J., Lyakhov, A., & Choi, B. D. (2012). Performance analysis of bandwidth requests under unicast, multicast and broadcast pollings in IEEE 802.16d/e. Telecommunication Systems, 50(1), 15–30.CrossRefGoogle Scholar
  8. 8.
    Kesten, H., & Runnenburg, J Th. (1956). Priority in waiting line problems. Amsterdam: Mathematisch Centrum.Google Scholar
  9. 9.
    Khan, B. M., & Ali, F. H. (2013). Collision Free Mobility Adaptive (CFMA) MAC for wireless sensor networks. Telecommunication Systems, 52(4), 2459–2474.CrossRefGoogle Scholar
  10. 10.
    Klemm, A., Lindermann, C., & Lohmann, M. (2003). Modelling IP traffic using the batch Markovian arrival process. Performance Evaluation, 54, 149–173.CrossRefGoogle Scholar
  11. 11.
    Lucantoni, D. M. (1991). New results on the single server queue with a batch Markovian arrival process. Communications in Statistics-Stochastic Models, 7, 1–46.CrossRefGoogle Scholar
  12. 12.
    Lucantoni, D. M., & Neuts, M. F. (1994). Some steady-state distribution for the MAP/SM/1 queue. Communications in Statistics-Stochastic Models, 10, 575–598.CrossRefGoogle Scholar
  13. 13.
    Mann, C. R., Baldwin, R. O., Kharoufeh, J. P., & Mullins, B. E. (2007). A trajectory-based selective broadcast query protocol for large-scale, high-density wireless sensor networks. Telecommunication Systems, 35, 67–86.CrossRefGoogle Scholar
  14. 14.
    Neuts, M. F. (1989). Structured stochastic matrices of M/G/1 type and their applications. New York: Marcel Dekker.Google Scholar
  15. 15.
    Saffer, Z., & Telek, M. (2010). Analysis of BMAP vacation queue and its application to IEEE 802.16e sleep mode. Journal of Industrial and Management Optimization, 6(3), 661–690.CrossRefGoogle Scholar
  16. 16.
    Takagi, H. (1991). Queueing analysis: A foundation of performance evaluation (Vol. 1). New York, NY: North-Holland.Google Scholar
  17. 17.
    Turck, K. D., Vuyst, S. D., Fiems, D., & Wittevrongel, S. (2008). Performance analysis of the IEEE 802.16e sleep mode for correlated downlink traffic. Telecommunication Systems, 39, 145–156.CrossRefGoogle Scholar
  18. 18.
    van Danzig, D. (1955). Chaines de Markof dans les ensembles abstraits et applications aux processus avec regions absorbantes et au probleme des boucles. Ann. de l’Inst. H. Poincare, 14(fasc. 3), 145–199.Google Scholar
  19. 19.
    Vishnevskii, V. M., Lakontsev, D. V., Semenova, O. V., & Shpilev, S. A. (2006). Polling model for investigation of the broadband wireless networks. Automation and Remote Control, 67, 1974–1995.CrossRefGoogle Scholar
  20. 20.
    Vishnevsky, V., Dudin, A., Klimenok, V., Semenova, O., & Shpilev, S. (2012). Approximate method to study M/G/1-type polling system with adaptive polling mechanism. Quality Technology & Quantitative Management, 9, 211–228.Google Scholar
  21. 21.
    Vishnevsky, V. M., Dudin, A. N., Semenova, O. V., & Klimenok, V. I. (2011). Performance analysis of the BMAP/G/1 queue with gated servicing and adaptive vacations. Performance Evaluation, 68, 446–462.CrossRefGoogle Scholar
  22. 22.
    Vishnevsky, V., Semenova, O. Dudin, A., Klimenok, V. (2009). Queueing model with gated service and adaptive vacations. In IEEE International Conference on Communications Workshops, ICC-2009 14–18 June, Dresden, Germany.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Alexander N. Dudin
    • 1
    Email author
  • Vladimir M. Vishnevsky
    • 2
  • Julia V. Sinjugina
    • 1
  1. 1.Department of Applied Mathematics and Computer ScienceBelarusian State UniversityMinskBelarus
  2. 2.Institute of Control Sciences of Russian Academy of Sciences and Closed Corporation “Information and Networking Technologies”MoscowRussia

Personalised recommendations