Telecommunication Systems

, Volume 59, Issue 1, pp 93–110 | Cite as

An energy efficient DOA estimation algorithm for uncorrelated and coherent signals in virtual MIMO systems

Article

Abstract

The multiple input and multiple output (MIMO) and smart antenna (SA) technique have been widely accepted as promising schemes to improve the spectrum efficiency and coverage of mobile communication systems. The definition of direction-of-arrival (DOA) estimation is that multiple directions of incident signals can be estimated simultaneously by some algorithms using the received data. The conventional DOA estimation of user equipments (UEs) is one by one, which is named as sequential scheme. The Virtual MIMO (VMIMO) scheme is that the base station (BS) estimates the DOAs of UEs in a parallel way, which adopts the SA simultaneously. Obviously, when the power is fixed, the VMIMO scheme is much more energy efficient than the sequential scheme. In VMIMO scheme, a set of UEs are grouped together to simultaneously communicate with the BS on a given resource block. Then the BS using multiple antennas can estimate the 2D-DOA of the UEs in the group simultaneously. Based on VMIMO system, the 2D-DOA estimation algorithm for uncorrelated and coherent signals is proposed in this paper. The special structure of mutual coupling matrix (MCM) of uniform linear array (ULA) is applied to eliminate the effect of mutual coupling. The 2D-DOA of uncorrelated signals can be estimated by DOA-matrix method. The parameter pairing between azimuth and elevation is accomplished. Then these estimations are utilized to get the mutual coupling coefficients. Based on spatial smoothing and DOA matrix method, the 2D-DOA of coherent signals can be estimated. The Cramer–Rao lower bound is derived at last. Simulation results demonstrate the effectiveness and performance of the proposed algorithm.

Keywords

VMIMO system DOA estimation Multipath Mutual coupling 

References

  1. 1.
    Aruna, T., & Suganthi, M. (2012). Variable power adaptive MIMO OFDM system under imperfect CSI for mobile ad hoc networks. Telecommunication Systems, 50(1), 47–53.CrossRefGoogle Scholar
  2. 2.
    Bao, Q., Ko, C. C., & Zhi, W. (2005). DOA estimation under unknown mutual coupling and multipath. IEEE Transactions on Aerospace and Electronic Systems, 41(2), 565–573.CrossRefGoogle Scholar
  3. 3.
    Cadzow, J. A., Kim, Y. S., Shiue, D., Sun, Y., & Xu, G. (1987). Resolution of coherent signals using a linear array. In IEEE International Conference on Acoustics, Speech, and Signal Processing (pp. 1597–1600).Google Scholar
  4. 4.
    Cadzow, J., Kim, Y., & Shiue, D. (1989). General direction-of -arrival estimation: A signal subspace approach. IEEE Transactions on Aerospace and Electronic Systems, 25(1), 31–47.CrossRefGoogle Scholar
  5. 5.
    Chen, H., Pan, Z., Tian, L., Shi, J., Yang, G., & Suzuki, M. (2013). A novel AWSF algorithm for DOA estimation in virtual MIMO systems. IEEE Journal on Selected Areas in Communications, 31(10), 1994–2003.CrossRefGoogle Scholar
  6. 6.
    Chen, Z., Yuan, J., & Vucetic, B. (2005). Analysis of transmit antenna selection/maximal-ratio combining in Rayleigh fading channels. IEEE Transactions on Vehicular Technology, 54(4), 1312–1321.CrossRefGoogle Scholar
  7. 7.
    Chung, J., Yun, Y., & Choi, S. (2013). Experiments on MIMO-OFDM system combined with adaptive beamforming based on IEEE 802.16 e WMAN standard. Telecommunication Systems, 52(4), 1931–1944.CrossRefGoogle Scholar
  8. 8.
    Dai, J., Xu, W., & Zhao, D. (2012). Real-valued DOA estimation for uniform linear array with unknown mutual coupling. Signal Processing, 92(9), 2056–2065.CrossRefGoogle Scholar
  9. 9.
    Dai, J., & Ye, Z. (2011). Spatial moothing for direction of arrival estimation of coherent signals in the presence of unknown mutual coupling. IET Signal Processing, 5(4), 418–425.CrossRefGoogle Scholar
  10. 10.
    Di, A., & Tian, L. (1984). Matrix decomposition and multiple source location. In IEEE International Conference on Acoustics, Speech, and Signal Processing (pp. 722–725).Google Scholar
  11. 11.
    Di, A. (1985). Multiple source location: A matrix decomposition approach. IEEE Transactions on Acoustics, Speech and Signal Processing, 33(5), 1086–1091.CrossRefGoogle Scholar
  12. 12.
    Friedlander, B., & Weiss, A. J. (1991). Direction finding in the presence of mutual coupling. IEEE Transactions on Antennas and Propagation, 39(3), 273–284.CrossRefGoogle Scholar
  13. 13.
    Gan, L., & Luo, X. (2013). Direction-of-arrival estimation for uncorrelated and coherent signals in the presence of multipath propagation. IET Microwaves, Antennas & Propagation, 7(9), 746–753.CrossRefGoogle Scholar
  14. 14.
    Han, G., Xu, H., Duong, T. Q., Jiang, J., & Hara, T. (2013). Localization algorithms of wireless sensor networks: A survey. Telecommunication Systems, 52(4), 2419–2436.CrossRefGoogle Scholar
  15. 15.
    He, J., & Liu, Z. (2009). Extended aperture 2-D direction finding with a two-parallel-shape-array using propagator method. IEEE Antennas and Wireless Propagation Letters, 8, 323–327.CrossRefGoogle Scholar
  16. 16.
    Jiang, J., Han, G., Zhu, C., Dong, Y., & Zhang, N. (2011). Secure localization in wireless sensor networks: A survey. Journal of Communications, 6(6), 460–470.CrossRefGoogle Scholar
  17. 17.
    Karimi, O. B., Toutounchian, M. A., Liu, J., & Wang, C. (2013). Lightweight user grouping with flexible degrees of freedom in virtual MIMO. IEEE Journal on Selected Areas in Communications, 31(10), 2004–2012.CrossRefGoogle Scholar
  18. 18.
    Kuchar, A., Tangemann, M., & Bonek, E. (2002). A real-time DOA-based smart antenna processor. IEEE Transactions on Vehicular Technology, 51(6), 1279–1293.CrossRefGoogle Scholar
  19. 19.
    Li, J., Zhang, X., & Chen, H. (2012). Improved two-dimensional DOA estimation algorithm for two-parallel uniform linear arrays using propagator method. Signal Processing, 92(12), 3032–3038.CrossRefGoogle Scholar
  20. 20.
    Li, P., Xu, J., & Yu, B. (1997). An efficient method in array processing for eliminating the signal cancellation phenomena of the differencing method. Signal Processing, 56(3), 305–312.CrossRefGoogle Scholar
  21. 21.
    Liu, F., Wang, J., Sun, C., & Du, R. (2012). Spatial differencing method for DOA estimation under the coexistence of both uncorrelated and coherent signals. IEEE Transactions on Antennas and Propagation, 60(4), 2052–2062.CrossRefGoogle Scholar
  22. 22.
    Liu, Z., Huang, Z., Wang, F., & Zhou, Y. (2009). DOA estimation with uniform linear arrays in the presence of mutual coupling via blind calibration. Signal Processing, 89(7), 1446–1456.CrossRefGoogle Scholar
  23. 23.
    Mohammadi, A., & Ghannouchi, F. M. (2011). Single RF front-end MIMO transceivers. IEEE Communications Magazine, 49(12), 104–109.CrossRefGoogle Scholar
  24. 24.
    Ntontin, K., Di Renzo, M., Perez-Neira, A., & Verikoukis, C. (2013). A low-complexity method for antenna selection in spatial modulation systems. IEEE Communications Letters, 17(12), 2312–2315.CrossRefGoogle Scholar
  25. 25.
    Qi, C., Wang, Y., Zhang, Y., & Han, Y. (2005). Spatial difference smoothing for DOA estimation of coherent signals. IEEE Signal Processing Letters, 12(11), 800–802.CrossRefGoogle Scholar
  26. 26.
    Roy, R., & Kailath, T. (1989). ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics, Speech and Signal Processing, 37(7), 984–995.CrossRefGoogle Scholar
  27. 27.
    Schmidt, R. O. (1986). Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation, 34(3), 276–280.CrossRefGoogle Scholar
  28. 28.
    Swindlehurst, A. L., & Kailath, T. (1992). A performance analysis of subspace-based methods in the presence of model errors. I. The MUSIC algorithm. IEEE Transactions on Signal Processing, 40(7), 1758–1774.CrossRefGoogle Scholar
  29. 29.
    Tang, L., Chen, Q., Wang, G., Zeng, X., & Wang, H. (2013). Opportunistic power allocation strategies and fair subcarrier allocation in OFDM-based cognitive radio networks. Telecommunication Systems, 52(4), 2071–2082.CrossRefGoogle Scholar
  30. 30.
    Tao, H., Xin, J., Wang, J., Zheng, N., & Sano, A. (2013). Two-dimensional direction of arrival estimation method for a mixture of noncoherent and coherent narrowband signals. In 2013 IEEE 14th Workshop on Signal Processing Advances in Wireless Communications (pp. 440–444).Google Scholar
  31. 31.
    Wang, H., & Liu, K. R. (1998). 2-D spatial smoothing for multipath coherent signal separation. IEEE Transactions on Aerospace and Electronic Systems, 34(2), 391–405.CrossRefGoogle Scholar
  32. 32.
    Wen, H., Gong, G., Lv, S. C., & Ho, P. H. (2013). Framework for MIMO cross-layer secure communication based on STBC. Telecommunication Systems, 52(4), 2177–2185.CrossRefGoogle Scholar
  33. 33.
    Williams, R. T., Prasad, S., Mahalanabis, A. K., & Sibul, L. H. (1988). An improved spatial smoothing technique for bearing estimation in a multipath environment. IEEE Transactions on Acoustics, Speech and Signal Processing, 36(4), 425–432.CrossRefGoogle Scholar
  34. 34.
    Xia, T., Zheng, Y., Wan, Q., & Wang, X. (2007). Decoupled estimation of 2-D angles of arrival using two parallel uniform linear arrays. IEEE Transactions on Antennas and Propagation, 55(9), 2627–2632.CrossRefGoogle Scholar
  35. 35.
    Xu, X., & Ye, Z. (2012). Two-dimensional direction of arrival estimation by exploiting the symmetric configuration of uniform rectangular array. IET Radar, Sonar & Navigation, 6(5), 307–313.CrossRefGoogle Scholar
  36. 36.
    Xu, X., Ye, Z., & Peng, J. (2007). Method of direction-of-arrival estimation for uncorrelated, partially correlated and coherent sources. IET Microwaves, Antennas & Propagation, 1(4), 949–954.Google Scholar
  37. 37.
    Xu, X., Ye, Z., & Zhang, Y. (2009). DOA estimation for mixed signals in the presence of mutual coupling. IEEE Transactions on Signal Processing, 57(9), 3523–3532.CrossRefGoogle Scholar
  38. 38.
    Ye, Z., Dai, J., Xu, X., & Wu, X. (2009). DOA estimation for uniform linear array with mutual coupling. IEEE Transactions on Aerospace and Electronic Systems, 45(1), 280–288.CrossRefGoogle Scholar
  39. 39.
    Ye, Z., & Liu, C. (2008). On the resiliency of MUSIC direction finding against antenna sensor coupling. IEEE Transactions on Antennas and Propagation, 56(2), 371–380.CrossRefGoogle Scholar
  40. 40.
    Ye, Z., & Xu, X. (2007). DOA estimation by exploiting the symmetric configuration of uniform linear array. IEEE Transactions on Antennas and Propagation, 55(12), 3716–3720.CrossRefGoogle Scholar
  41. 41.
    Ye, Z., Zhang, Y., & Xu, X. (2009). Two-dimensional direction of arrival estimation in the presence of uncorrelated and coherent signals. IET Signal Processing, 3(5), 416–429.CrossRefGoogle Scholar
  42. 42.
    Zhang, Y., Ye, Z., Xu, X., & Cui, J. (2010). Estimation of two-dimensional direction-of-arrival for uncorrelated and coherent signals with low complexity. IET Radar, Sonar & Navigation, 4(4), 507–519.CrossRefGoogle Scholar
  43. 43.
    Zhou, Y., & Ng, T. S. (2009). Performance analysis on MIMO-OFCDM systems with multi-code transmission. IEEE Transactions on Wireless Communications, 8(9), 4426–4433.CrossRefGoogle Scholar
  44. 44.
    Zhu, H., & Wang, J. (2009). Chunk-based resource allocation in OFDMA systems: Part I: Chunk allocation. IEEE Transactions on Communications, 57(9), 2734–2744.CrossRefGoogle Scholar
  45. 45.
    Zhu, H., & Wang, J. (2012). Chunk-based resource allocation in OFDMA systems: Part II: Joint chunk, power and bit allocation. IEEE Transactions on Communications, 60(2), 499–509.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Information and Communication EngineeringHarbin Engineering UniversityHarbinChina
  2. 2.Department of Information and Communication SystemsHohai UniversityChangzhouChina
  3. 3.Instituto de TelecomunicaçõesUniversity of Beira InteriorCovilhãPortugal
  4. 4.University of ITMOSt. PetersburgRussia
  5. 5.Institute of Electromagnetics and AcousticsXiamen UniversityXiamenChina

Personalised recommendations