Telecommunication Systems

, Volume 58, Issue 4, pp 293–311 | Cite as

Efficient group signatures for privacy-preserving vehicular networks

  • Lukas Malina
  • Arnau Vives-Guasch
  • Jordi Castellà-Roca
  • Alexandre Viejo
  • Jan Hajny
Article

Abstract

In this paper, we deal with efficient group signatures employed in secure and privacy-preserving vehicular networks. Our solution aims to minimize the impact of several common attacks like denial of services or replay attacks on the efficiency of privacy-preserving security solutions in vehicular networks. Due to advanced properties like a short-term linkability and a categorized batch verification, our solution based on group signatures ensures privacy, security and the efficiency of vehicular networks which can be attacked by malicious parties. We outline the proposed communication pattern of vehicular networks, our security solution in detail, a formal security analysis and the experimental implementation of our solution. In addition, we evaluate and compare our solution with related works. Our group signature scheme is more efficient and secure in the signing phase and in the verification phase than related schemes.

Keywords

Authenticity Cryptography  Group signatures Privacy Security Vehicular networks 

References

  1. 1.
    Acquisti, A. (2010). The economics of personal data and the economics of privacy. In texte de la conférence donnée en décembre.Google Scholar
  2. 2.
    Bellare, M., Garay, J., & Rabin, T. (1998). Fast batch verification for modular exponentiation and digital signatures. Advances in Cryptology EUROCRYPT’98 (pp. 236–250).Google Scholar
  3. 3.
    Boneh, D., Boyen, X., & Shacham, H. (2004). Short group signatures. In Proceedings of Advances in Cryptology-Crypto 04, Ser. LNCS 3152 (pp. 41–55). Berlin: Springer.Google Scholar
  4. 4.
    Chen, Y. M., & Wei, Y. C. (2012). Safeanon: A safe location privacy scheme for vehicular networks. Telecommunication Systems, 50, 339–354. doi:10.1007/s11235-010-9408-x.CrossRefGoogle Scholar
  5. 5.
    Chim, T. W., Yiu, S. M., Hui, L. C. K., & Li, V. O. K. (2011). Specs: Secure and privacy enhancing communications schemes for vanets. Ad Hoc Networks, 9(2), 189–203.CrossRefGoogle Scholar
  6. 6.
    Ferrara, A. L., Green, M., Hohenberger, S., & Pedersen, M. Ø. (2009). Practical short signature batch verification. In Topics in Cryptology: The Cryptographers’ Track at the RSA Conference (Vol. 5473, pp. 309–324). Berlin: Springer.Google Scholar
  7. 7.
    Fonseca, E., Festag, A., Baldessari, R., & Aguiar, R. (2007). Support of anonymity in vanets: Putting pseudonymity into practice. In Proceedings of IEEE Wireless Communications and Networking Conference (WCNC), Hong Kong.Google Scholar
  8. 8.
    Gerlach, M., Festag, A., Leinmuller, T., Goldacker, G., & Harsch, C. (2007). Security architecture for vehicular communication. In The 5th International Workshop on Intelligent Transportation.Google Scholar
  9. 9.
    Horng, W. B., Lee, C. P., & Peng, J. W. (2012). Privacy preservation in secure group communications for vehicular ad hoc networks. Telecommunication Systems, 50, 355–365. doi:10.1007/s11235-010-9409-9.CrossRefGoogle Scholar
  10. 10.
    Hu, Y., & Laberteaux, K. (2006). Strong vanet security on a budget. In Proceedings of Workshop on Embedded Security in Cars (ESCAR).Google Scholar
  11. 11.
    Hussain, R., Kim, S., & Oh, H. (2009). Towards privacy aware pseudonymless strategy for avoiding profile generation in vanet. In H. Youm, & M. Yung (eds.) Information Security Applications. Lecture Notes in Computer Science (Vol. 5932, pp. 268–280).Google Scholar
  12. 12.
    Johnson, D., Menezes, A., & Vanstone, S. (2001). The elliptic curve digital signature algorithm (ecdsa). International Journal of Information Security, 1(1), 36–63.CrossRefGoogle Scholar
  13. 13.
    Lin, X., Sun, X., han Ho, P., & Shen, X. (2007). A secure and privacy preserving protocol for vehicular communications. IEEE Transactions on Vehicular Technology, 56, 3442–3456.CrossRefGoogle Scholar
  14. 14.
    Malina, L., & Hajny, J. (2011). Accelerated modular arithmetic for low-performance devices. In The 34th International Conference on Telecommunications and Signal Processing (TSP) (pp. 131–135).Google Scholar
  15. 15.
    Malina, L., Castellà-Roca, J., Vives-Guasch, A., & Hajny, J. (2013). Short-term linkable group signatures with categorized batch verification. In Foundations and Practice of Security (pp. 244–260). Berlin: Springer.Google Scholar
  16. 16.
    Petit, J., & Mammeri, Z. (2011). Authentication and consensus overhead in vehicular ad hoc networks. Telecommunication Systems, 52, 2699–2712. doi:10.1007/s11235-011-9589-y.CrossRefGoogle Scholar
  17. 17.
    Qin, B., Wu, Q., Domingo-Ferrer, J., & Zhang, L. (2011). Preserving security and privacy in large-scale vanets. In Proceedings of the 13th international conference on Information and communications security, ICICS’11 (pp. 121–135). Berlin: Springer.Google Scholar
  18. 18.
    Raya, M., Papadimitratos, P., & Hubaux, J. P. (2006). Securing vehicular communications. IEEE Wireless Communications, 13(5), 8–15. doi:10.1109/WC-M.2006.250352.CrossRefGoogle Scholar
  19. 19.
    Raya, M., & Hubaux, J. P. (2007). Securing vehicular ad hoc networks. Journal of Computer Security, 15, 39–68.Google Scholar
  20. 20.
    Studer, A., Shi, E., Bai, F., & Perrig, A. (2009). Tacking together efficient authentication, revocation, and privacy in vanets. In SECON, pp. 1–9. Rome: IEEE.Google Scholar
  21. 21.
    Tsai, H. W. (2012). Aggregating data dissemination and discovery in vehicular ad hoc networks. Telecommunication Systems, 50, 285–295. doi:10.1007/s11235-010-9404-1.CrossRefGoogle Scholar
  22. 22.
    Tsiounis, Y., & Yung, M. (1998). On the security of elgamal based encryption. Public Key Cryptography. New York: Springer.Google Scholar
  23. 23.
    Wasef, A., & Shen, X. S. (2010). Efficient group signature scheme supporting batch verification for securing vehicular networks. In IEEE International Conference on Communications (ICC).Google Scholar
  24. 24.
    Wei, L., Liu, J., & Zhu, T. (2011). On a group signature scheme supporting batch verification for vehicular networks. International Conference on Multimedia Information Networking and Security (pp. 436–440). Los Alamitos, CA: IEEE C. S.Google Scholar
  25. 25.
    Zeadally, S., Hunt, R., Chen, Y. S., Irwin, A., & Hassan, A. (2012). Vehicular ad hoc networks (vanets): status, results, and challenges. Telecommunication Systems, 50, 217–241. doi:10.1007/s11235-010-9400-5.CrossRefGoogle Scholar
  26. 26.
    Zhang, C., Lu, R., Lin, X., Ho, P. H., & Shen, X. (2008). An efficient identity-based batch verification scheme for vehicular sensor networks. In INFOCOM (pp. 246–250). Phoenix, AZ: IEEE.Google Scholar
  27. 27.
    Zhang, L., Wu, Q., Solanas, A., & Domingo-Ferrer, J. (2010). A scalable robust authentication protocol for secure vehicular communications. IEEE Transactions on Vehicular Technology, 59(4), 1606–1617.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Lukas Malina
    • 1
  • Arnau Vives-Guasch
    • 2
  • Jordi Castellà-Roca
    • 2
  • Alexandre Viejo
    • 2
  • Jan Hajny
    • 1
  1. 1.Department of TelecommunicationsBrno University of TechnologyBrnoCzech Republic
  2. 2.Department of Computer Engineering and MathematicsUniversitat Rovira i VirgiliTarragonaSpain

Personalised recommendations