Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Efficient FPGA implementation of a STBC-OFDM combiner for an IEEE 802.16 software radio receiver

  • 285 Accesses

Abstract

In this paper, an efficient FPGA implementation of a 4×4 Space-Time Block Coding (STBC) combiner for MIMO-OFDM software radio receivers is considered. The proposed combiner is based on a low-complexity algorithm which reduces the interference due to the Quasi-Orthogonality of the STBC decoding. In the literature, feedback techniques have been proposed to solve this problem. However, the algorithm introduced in this paper has been conceived in order to avoid the transmission feedback, by estimating the interference factors and removing them. The proposed algorithm exhibits a low computational complexity and complies with the requirements of HW feasibility, considering the execution time/area occupation trade-off.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Hanzo, L., Akhtman, Y., Wang, L., & Jiang, M. (2011). MIMO-OFDM for LTE, WiFi and WiMAX: coherent versus non-coherent and cooperative turbo transceivers. New York: Wiley–IEEE Press.

  2. 2.

    Gesbert, D., Shafi, M., et al. (2003). From theory to practice: an overview of MIMO space-time coded wireless systems. IEEE Journal on Selected Areas in Communications, 21(3), 281–301.

  3. 3.

    Alamouti, S. M. (1998). A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications, 16(8), 1451–1458.

  4. 4.

    Foschini, G. J. (1996). Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Labs Technical Journal, 1(2), 41–59.

  5. 5.

    Heath, R. V., & Paulraj, A. J. (2005). Switching between diversity and multiplexing in MIMO systems. IEEE Transactions on Communications, 53(6), 962–968.

  6. 6.

    Bian, Y. Q., Nix, A. R., Tameh, E., & McGeehan, J. (2008). MIMO-OFDM WLAN architectures, area coverage and link adaptation for urban hotspots. IEEE Transactions on Vehicular Technology, 57(4), 2364–2374.

  7. 7.

    Chung, J., Yun, Y., & Choi, S. (2011). Experiments on MIMO-OFDM system combine with adaptive beamforming based on IEEE 802.16e WMAN standard. Telecommunication Systems. doi:10.1007/s11235-011-9475-7.

  8. 8.

    Aruna, T., & Suganthi, M. (2010). Variable power adaptive MIMO OFDM system under imperfect CSI for mobile ad hoc networks. Telecommunication Systems. doi:10.1007/s1235-010-9387-y.

  9. 9.

    Gupta, A., Forenza, A., & Heat, R. W. (2004). Rapid MIMO-OFDM software defined radio system prototyping. In Proc. of 2004 IEEE workshop on signal processing systems (SIPS 2004), Austin, TX, 13–15 October 2004 (pp. 182–186).

  10. 10.

    Li, X., Hu, W., Yousefi’zadeh, H., & Qureshi, A. (2008). A case study of a MIMO SDR implementation. In Proc. of IEEE MILCOM 2008 conf, San Diego, CA, 16–19 Nov. 2008 (pp. 1–7).

  11. 11.

    Palkovic, M., Capelle, H., Glassee, M., Bougard, B., & Van der Perre, L. (2008). Mapping of 40 MHz MIMO SDM-OFDM baseband processing on multi-processor SDR platform. In Proc. of 11th IEEE workshop on design and diagnostics of electronic circuits and systems (DDECS 2008), Bratislava, SK, 16–18 Apr. 2008, available on CD-ROM.

  12. 12.

    Pan, H. K., Tsai, J., Golden, S., Nair, V. K., & Bernhard, J. T. (2008). Reconfigurable antenna implementation in multi-radio platform. In Proc. of IEEE antennas and propagat. symp. (AP-S 2008), San Diego, CA, 5–11 July 2008, available on CD-ROM.

  13. 13.

    Thomos, C., & Kalivalas, G. (2011). FPGA-based architecture and implementation techniques of a low-complexity hybrid RAKE receiver for a DS-UWB communication system. Telecommunication Systems. doi:10.1007/s11235-011-9487-3.

  14. 14.

    Haene, S., Perels, D., & Burg, A. (2008). A real-time 4-stream MIMO-OFDM transceiver: system design, FPGA implementation and characterization. IEEE Journal on Selected Areas in Communications, 26(6), 877–889.

  15. 15.

    Wang, J., & Sobelman, G. E. (2011). Joint MIMO transceiver design based on uniform channel decomposition. Electronics Letters, 47(5), 1–2.

  16. 16.

    Yu, S., Im, T. H., Park, C. H., Kim, J., & Cho, Y. S. (2008). An FPGA implementation of MML-DFE for spatial multiplexed MIMO systems. IEEE Transactions on Circuits and Systems. II, Express Briefs, 55(7), 705–709.

  17. 17.

    Boher, L., Rabineau, R., & Helard, M. (2008). FPGA implementation of an iterative receiver for MIMO-OFDM systems. IEEE Journal on Selected Areas in Communications, 26(6), 857–866.

  18. 18.

    Huang, X., Liang, C., & Ma, J. (2008). System architecture and implementation of MIMO sphere decoders on FPGA. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 16(2), 188–197.

  19. 19.

    IEEE Standard 802.16-2004, Part 16: Air interface for fixed broadband wireless access systems, October 2004, http://ieee802.org/16/published.html.

  20. 20.

    Kaiser, T., Bourdoux, A. et al. (Eds.) (2005). EURASIP series on signal processing and communications. Smart antennas—state of the art. New York: Hindawi.

  21. 21.

    Volder, J. E. (1959). The CORDIC trigonometric computing technique. IRE Transactions on Electronic Computers, EC-8, 330–334.

Download references

Author information

Correspondence to Andrea F. Cattoni.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cattoni, A.F., Le Moullec, Y. & Sacchi, C. Efficient FPGA implementation of a STBC-OFDM combiner for an IEEE 802.16 software radio receiver. Telecommun Syst 56, 245–255 (2014). https://doi.org/10.1007/s11235-013-9833-8

Download citation

Keywords

  • Spatial diversity
  • MIMO
  • Software defined radio
  • FPGA