Telecommunication Systems

, Volume 56, Issue 1, pp 103–119 | Cite as

Optimization methods for improving IP-level fast protection for local shared risk groups with Loop-Free Alternates

  • Máté NagyEmail author
  • János Tapolcai
  • Gábor Rétvári


Lately, demand for fast failure recovery in IP networks has become compelling. The Loop-Free Alternates (LFA) specification is a simple IP Fast ReRoute (IPFRR) scheme proposed by the IETF that does not require profound changes to the network infrastructure before deployment. However, this simplicity comes at a severe price, because LFA does not provide complete protection for all possible failure cases in a general topology. This is even more so if network components are prone to fail jointly. In this paper, we study an important network optimization problem arising in this context, the so called LFA graph extension problem, which asks for augmenting the topology with new links in an attempt to improve the LFA failure case coverage. Unfortunately, this problem is NP-complete. The main contributions of the paper are a novel extension of the bipartite graph model for the LFA graph extension problem to the multiple-failure case using the model of Shared Risk Groups, and a suite of accompanying heuristics to obtain approximate solutions. We also compare the performance of the algorithms in extensive numerical studies and we conclude that the optimum can be approximated well in most cases relevant to practice.


IP Fast ReRoute Loop-Free Alternates Link and node protection Heuristics 



The work was partially supported by the grant TÁMOP-4.2.2.B-10/1–2010-0009.


  1. 1.
    Atlas, A., Kebler, R., Konstantynowicz, M., Enyedi, G., Császár, A., & Shand, M. (2011). An architecture for IP/LDP fast-reroute using maximally redundant trees. Internet draft. Google Scholar
  2. 2.
    Atlas, A., & Zinin, A. (2008). Basic specification for IP fast reroute: Loop-Free Alternates. RFC 5286. Google Scholar
  3. 3.
    Bryant, S., Filsfils, C., Previdi, S., & Shand, M. (2007). IP Fast Reroute using tunnels. Internet draft. Google Scholar
  4. 4.
    Bryant, S., Shand, M., & Previdi, S. (2010). IP fast reroute using Not-via addresses. Internet draft. Google Scholar
  5. 5.
    Callon, R. (1990). Use of OSI IS-IS for routing in TCP/IP and dual environments. RFC 1195. Google Scholar
  6. 6.
    Čičic, T., Hansen, A. F., & Apeland, O. K. (2007). Redundant trees for fast IP recovery. In Broadnets (pp. 152–159). Google Scholar
  7. 7.
    Cisco Systems (2008). Cisco IOS XR routing configuration guide. Release 3.7. Google Scholar
  8. 8.
    Császár, A., Enyedi, G., Hidell, M., Rétvári, G., & Sjödin, P. (2007). Converging the evolution of router architectures and IP networks. IEEE Network Magazine, Special Issue on Advances in Network Systems Architecture, 21(4), 8–14. doi: 10.1109/MNET.2007.386464. Google Scholar
  9. 9.
    Enyedi, G., Rétvári, G., & Cinkler, T. (2007). A novel loop-free IP fast reroute algorithm. In EUNICE. Google Scholar
  10. 10.
    Enyedi, G., & Rétvári, R. (2010). Finding multiple maximally redundant trees in linear time. Periodica Polytechnica. Available online: (to appear).
  11. 11.
    Enyedi, G., Szilágyi, P., Rétvári, G., & Császár, A. (2009). IP fast ReRoute: lightweight Not-via without additional addresses. In INFOCOM mini-conf. Google Scholar
  12. 12.
    Fortz, B., Rexford, J., & Thorup, M. (2002). Traffic engineering with traditional IP routing protocols. IEEE Communications Magazine, 40(10), 118–124. CrossRefGoogle Scholar
  13. 13.
    Francois, P., & Bonaventure, O. (2005). An evaluation of IP-based fast reroute techniques. In ACM CoNEXT (pp. 244–245). CrossRefGoogle Scholar
  14. 14.
    Francois, P., Filsfils, C., Evans, J., & Bonaventure, O. (2005). Achieving sub-second IGP convergence in large IP networks. Computer Communication Review, 35(3), 35–44. CrossRefGoogle Scholar
  15. 15.
    Garey, M., & Johnson, D. (1990). Computers and intractability; a guide to the theory of NP-completeness. New York: Freeman. Google Scholar
  16. 16.
    Gjoka, M., Ram, V., & Yang, X. (2007). Evaluation of IP fast reroute proposals. In IEEE comsware. Google Scholar
  17. 17.
    Gomes, T., Simoes, C., & Fernandes, L. (2010). Resilient routing in optical networks using SRLG-disjoint path pairs of min-sum cost. Telecommunication Systems. Google Scholar
  18. 18.
    Hewlett-Packard (2008) HP 6600 router series: QuickSpecs. Available online:
  19. 19.
    Hock, D., Hartmann, M., Menth, M., Pióro, M., Tomaszewski, A., & Zukowski, C. (2011). Comparison of IP-based and explicit paths for one-to-one FastReroute in MPLS networks. Telecommunication Systems. Google Scholar
  20. 20.
    Hokelek, I., Fecko, M., Gurung, P., Samtani, S., Cevher, S., & Sucec, J. (2008). Loop-free IP Fast Reroute using local and remote LFAPs. Internet draft. Google Scholar
  21. 21.
    Juniper Networks (2009) JUNOS 9.6 Routing protocols configuration guide. Google Scholar
  22. 22.
    Knight, S., Nguyen, H. X., Falkner, N., Bowden, R., & Roughan, M. The Internet Topology Zoo.
  23. 23.
    Kulaga, P., Sapiecha, P., & Sej, K. (2005). Approximation algorithm for the argument reduction problem. In Computer recognition systems: proceedings of the 4th international conference on computer recognition systems (CORES’05) (p. 243). Berlin: Springer. CrossRefGoogle Scholar
  24. 24.
    Kvalbein, A., Hansen, A. F., Čičic, T., Gjessing, S., & Lysne, O. (2009). Multiple routing configurations for fast IP network recovery. IEEE/ACM Transactions on Networking, 17(2), 473–486. CrossRefGoogle Scholar
  25. 25.
    Kwong, K. W., Gao, L., Guerin, R., & Zhang, Z. L. (2010). On the feasibility and efficacy of protection routing in IP networks. In INFOCOM 2010 (long version appears as tech. rep. 2009, University of Pennsylvania). Google Scholar
  26. 26.
    Lee, S., Yu, Y., Nelakuditi, S., Zhang, Z. L., & Chuah, C. N. (2004). Proactive vs reactive approaches to failure resilient routing. In INFOCOM. Google Scholar
  27. 27.
    LEMON—library for efficient modeling and optimization in networks (2009).
  28. 28.
    Li, A., Francois, P., & Yang, X. (2007). On improving the efficiency and manageability of NotVia. In ACM CoNEXT. Google Scholar
  29. 29.
    Li, A., Yang, X., & Wetherall, D. (2009). SafeGuard: safe forwarding during route changes. In ACM CoNEXT (pp. 301–312). CrossRefGoogle Scholar
  30. 30.
    Lovász, L. (1975). On the ratio of optimal integral and fractional covers. Discrete Mathematics, 13(4), 383–390. CrossRefGoogle Scholar
  31. 31.
    Mahajan, R., Spring, N., Wetherall, D., & Anderson, T. (2002). Inferring link weights using end-to-end measurements. In ACM IMC (pp. 231–236). Google Scholar
  32. 32.
    Markopoulou, A., Iannaccone, G., Bhattacharyya, S., Chuah, C., Ganjali, Y., & Diot, C. (2008). Characterization of failures in an operational IP backbone network. IEEE/ACM Transactions on Networking, 16(4), 749–762. CrossRefGoogle Scholar
  33. 33.
    Mazbic-Kulma, B., & Sep, K. (2007). Some approximation algorithms for minimum vertex cover in a hypergraph. In M. Kurzynski, E. Puchala, M. Wozniak, & A. Zolnierek (Eds.), Advances in Soft Computing: Vol. 45. Computer Recognition Systems 2 (pp. 250–257). Berlin: Springer. CrossRefGoogle Scholar
  34. 34.
    Menth, M., Hartmann, M., & Hock, D. (2010). Routing optimization with IP Fast Reroute. Internet draft. Google Scholar
  35. 35.
    Menth, M., Hartmann, M., Martin, R., Čičić, T., & Kvalbein, A. (2010). Loop-free alternates and not-via addresses: a proper combination for IP fast reroute? Computer Networks, 54(8), 1300–1315. CrossRefGoogle Scholar
  36. 36.
    Moy, J. (1998). OSPF version 2. RFC 2328. Google Scholar
  37. 37.
    Nagy, M., & Rétvári, G. (2011). An evaluation of approximate network optimization methods for improving IP-level fast protection with loop-free alternates. In Proc. of the 4th international workshop on reliable networks design and modeling (RNDM). Google Scholar
  38. 38.
    Pan, P., Swallow, G., & Atlas, A. (2005). Fast reroute extensions to RSVP-TE for LSP tunnels. RFC 4090. Google Scholar
  39. 39.
    Previdi, S. (2006). IP fast ReRoute technologies. APRICOT. Google Scholar
  40. 40.
    Rétvári, G., Csikor, L., Tapolcai, J., Enyedi, G., & Császár, A. (2011). Optimizing IGP link costs for improving IP-level resilience. In Proc. international workshop on design of reliable communication networks (DRCN). Google Scholar
  41. 41.
    Rétvári, G., Tapolcai, J., Enyedi, G., & Császár, A. (2011). IP fast ReRoute: Loop Free Alternates revisited. In INFOCOM 2011 (pp. 2948–2956). CrossRefGoogle Scholar
  42. 42.
    Schollmeier, G., Charzinski, J., Kirstadter, A., Reichert, C., Schrodi, K., Glickman, Y., & Winkler, C. (2003). Improving the resilience in IP networks. In Workshop on high performance switching and routing (HPSR 2003) (pp. 91–96). CrossRefGoogle Scholar
  43. 43.
    Shand, M., & Bryant, S. (2010). IP Fast Reroute framework. RFC 5714. Google Scholar
  44. 44.
    SNDlib: Survivable fixed telecommunication network design library.
  45. 45.
    Sterbez, J., Cetinkaya, E., Hameed, M., Jabbar, A., Qian, S., & Rohrer, J. (2011). Evaluation of network resilience, survivability, and disruption tolerance: analysis, topology generation, simulation and experimentation. Berlin: Springer. Google Scholar
  46. 46.
    Swallow, G., Bryant, S., & Andersson, L. (2007). Avoiding equal cost multipath treatment in MPLS networks. RFC 4928. Google Scholar
  47. 47.
    Thorup, M., & Roughan, M. (2001). Avoiding ties in shortest path first routing (Technical Report). AT&T, Shannon Laboratory, Florham Park, NJ.
  48. 48.
    Viet, H. T., Francois, P., Deville, Y., & Bonaventure, O. (2009). Implementation of a traffic engineering technique that preserves IP Fast Reroute in COMET. In Rencontres francophones sur les aspects algorithmiques des telecommunications (Algotel 2009). Google Scholar
  49. 49.
    Zhong, Z., Nelakuditi, S., Yu, Y., Lee, S., Wang, J., & Chuah, C. N. (2005). Failure inferencing based fast rerouting for handling transient link and node failures. In INFOCOM. Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Máté Nagy
    • 1
    Email author
  • János Tapolcai
    • 1
  • Gábor Rétvári
    • 1
  1. 1.HSNLab, Dept. of Telecommunications and Media InformaticsBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations