Telecommunication Systems

, Volume 55, Issue 2, pp 241–251 | Cite as

Energy consumption of radio access networks in Finland

Article

Abstract

Energy consumption of radio access networks is related to the speed and volume of mobile data traffic. Finland aims to achieve two conflicting targets by 2015, the one of 100 Mbps user data rate provision to nearly all citizens and the other of the reduction of Information and Communications Technology industry carbon footprint. The purpose of this paper is to evaluate the energy consumption for several radio access networks deployment scenarios. Mobile operators can advance energy efficiency through (1) energy optimization of individual sites and (2) choice of energy efficient network deployment strategies. Models for the site power consumption, the average site traffic load factor and the average subscription mobile data traffic, are developed. The results show a reduction of energy consumption for mobile network based on LTE radio access technology which operates at 1800 MHz in urban region and 800 MHz in suburban and rural regions. In the dense urban region the LTE base stations are installed on the existing sites and in the less-dense urban region, wide-to-local area offloading is required.

Keywords

Broadband plan Energy consumption Mobile data traffic Radio access networks 

References

  1. 1.
    Aldebert, M., Ivaldi, M., & Roucolle, C. (2004). Telecommunications demand and pricing structure: an econometric analysis. Telecommunication Systems, 25(1,2), 89–115. CrossRefGoogle Scholar
  2. 2.
    Arnold, O., Richter, F., Fettweis, G., & Blume, O. (2010). Power consumption modeling of different base station types in heterogeneous cellular networks. In Future network and mobile summit, 16–18 June (pp. 1–8). Google Scholar
  3. 3.
    Badic, B., O’Farrrell, T., Loskot, P., & He, J. (2009). Energy efficient radio access architectures for green radio: large versus small cell size deployment. In Vehicular technology conference, fall, IEEE 70th, 20–23 September (pp. 1–5). Google Scholar
  4. 4.
    Bewley, R., & Fiebig, D. G. (1988). A flexible logistic growth model with applications in telecommunications. International Journal of Forecasting, 4(2), 177–192. doi:10.1016/0169-2070(88)90076-3. CrossRefGoogle Scholar
  5. 5.
    Blume, O., Zeller, D., & Barth, U. (2010). Approaches to energy efficient wireless access networks. In 4th international symposium on communications, control and signal processing (ISCCSP), 3–5 March (pp. 1–5). Google Scholar
  6. 6.
    Cisco (2011). Visual networking index: global mobile data traffic forecast update, 2010–2015. Available at http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.pdf. Accessed 22 January 2012.
  7. 7.
    Deruyck, M., Vereecken, W., Tanghe, E., Joseph, W., Pickavet, M., Martens, L., & Demeester, P. (2010). Power consumption in wireless access network. In Wireless conference (EW), European, 12–15 April (pp. 924–931). CrossRefGoogle Scholar
  8. 8.
    Deruyck, M., Vereecken, W., Tanghe, E., Joseph, W., Pickavet, M., Martens, L., & Demeester, P. (2010). Comparison of power consumption of mobile WiMAX, HSPA and LTE access networks. In 9th conference on telecommunications Internet and media techno economics (CTTE), 7–9 June (pp. 1–7). Google Scholar
  9. 9.
    Edler, T., & Lundberg, S. (2004). Energy efficiency enhancements in radio access networks. Ericsson review No.1. Available at http://www.ericsson.com/ericsson/corpinfo/publications/review/2004_01/files/2004015.pdf. Accessed 22 January 2012.
  10. 10.
    Elnegaard, K., Stordahl, K., Lydersen, J., & Eskedal, T. (2008). Mobile broadband evolution and the possibilities. Telektronikk 3/4.2008. Available at http://www.telenor.com/en/resources/images/063-073_MobileBroadbandEvolution-ver1_tcm28-36180.pdf. Accessed 22 January 2012.
  11. 11.
    Emerson (2008). Energy logic for telecommunications. Resource document. Energy logic for telecoms. Available at http://www.emersonnetworkpower.com/en-US/Brands/EnergySystems/Documents/Telecoms%20Energy%20Logic/Energy%20Logic%20for%20Telecom%20White%20Paper.pdf. Accessed 22 January 2012.
  12. 12.
    Ericsson (2007). Sustainable energy use in mobile communications. Connected urban development. Available at http://www.connectedurbandevelopment.org/publications/external. Accessed 22 January 2012.
  13. 13.
    Etoh, M., Ohya, T., & Nakayama, Y. (2008). Energy consumption issues on mobile network systems. In International symposium on applications and the Internet, 28 July–1 August (pp. 365–368). Google Scholar
  14. 14.
    European Commission (2009). Commission pushes ICT use for a greener Europe. Press release from European Commission, reference number IP/09/393. Available at http://europa.eu/rapid/pressReleasesAction.do?reference=IP/09/393&format=HTML&aged=1&language=EN&guiLanguage=en. Accessed 22 January 2012.
  15. 15.
    Fehske, A., Fettweis, G., Malmodin, J., & Biczok, G. (2011). The global footprint of mobile communications: the ecological and economic perspective. IEEE Communications Magazine, 49(8), 55–62. CrossRefGoogle Scholar
  16. 16.
    Fehske, A. J., Richter, F., & Fettweis, G. P. (2009). Energy efficiency improvements through micro sites in cellular mobile radio networks. In GLOBECOM workshops, 30 November–4 December (pp. 1–5). New York: IEEE. Google Scholar
  17. 17.
    Finnish Communications Regulatory Authority (2011). Half-year report of communications market. Available at http://www.ficora.fi/attachments/englantiav/63MTSW45U/Half-year_report_of_the_communications_market_2011.pdf. Accessed 22 January 2012.
  18. 18.
    Finnish Ministry of Transport and Communications (2008). Making broadband available to everyone. The national plan of action to improve the infrastructure of the information society. Publications of the Ministry of Transport and Communications, 50/2008. Available at http://www.lvm.fi/web/en/publication/-/view/821179. Accessed 22 January 2012.
  19. 19.
    GSM Association (2009). Mobile’s green manifesto. Resource document. GSMA. Available at http://www.gsma.com/documents/mobile-s-green-manifesto/20000. Accessed 22 January 2012.
  20. 20.
    Harno, J., Katsianis, D., Smura, T., Eskedal, T., Venturin, R., Pohjola, O., Kumar, K., & Varoutas, D. (2009). Alternatives for mobile operators in the competitive 3G and beyond business. Telecommunication Systems, 41(2), 77–95. doi:10.1007/s11235-009-9150-4. CrossRefGoogle Scholar
  21. 21.
    Holma, H., & Toskala, A. (2009). LTE for UMTS: OFDMA and SC-FDMA based radio access. New York: Wiley. CrossRefGoogle Scholar
  22. 22.
    IDATE consulting and research (2011). Broadband coverage in Europe, final report, survey. Available at http://ec.europa.eu/information_society/eeurope/i2010/docs/benchmarking/broadband_coverage_10_2007.pdf. Accessed 22 January 2012.
  23. 23.
    International Telecommunications Union (2008). ITU and climate change. Report. Available at http://www.itu.int/dms_pub/itu-s/opb/gen/S-GEN-CLIM-2008-11-PDF-E.pdf. Accessed 22 January 2012.
  24. 24.
    Jada, M., Hämäläinen, J., Jantti, R., & Hossain, M. (2010). Power efficiency model for mobile access network. In IEEE 21st international symposium on personal, indoor and mobile radio communications workshops (PIMRC workshops), 26–30 September (pp. 317–322). Google Scholar
  25. 25.
    Katsigiannis, M., & Hämmäinen, H. (2011). Energy and cost efficient radio access network deployments—case Finland. In 4th joint IFIP wireless and mobile networking conference (WMNC), 26–28 October (pp. 1–8). Google Scholar
  26. 26.
    Koutitas, G., & Demestichas, P. (2009). A review of energy efficiency in telecommunication networks. Proceedings of the International Telecommunication Forum, 2(1), 2–7. Google Scholar
  27. 27.
    Li, X., Toseef, U., Dulas, D., Bigos, W., Görg, C., Timm-Giel, A., & Klug, A. (2011). Dimensioning of the LTE access network. Telecommunication Systems. doi:10.1007/s11235-011-9593-2.
  28. 28.
    Maihaniemi, R. (2009). Energy efficient ICT. Elektroniikka Insinöörien Seura, ECT forum. Available at http://www.eis.fi/ect/fp/ECT09_240909_BR2_Maihaniemi.pdf. Accessed 22 January 2012
  29. 29.
    Malmodin, J., Moberg, Å., Lundén, D., Finnveden, G., & Lövehagen, N. (2010). Greenhouse gas emissions and operational electricity use in the ICT and entertainment & media sectors. Journal of Industrial Ecology, 14(5), 770–790. doi:10.1111/j.1530-9290.2010.00278.x. CrossRefGoogle Scholar
  30. 30.
    Michalakelis, C., Varoutas, D., & Sphicopoulos, T. (2008). Diffusion models of mobile telephony in Greece. Telecommunications Policy, 32(3–4), 234–245. doi:10.1016/j.telpol.2008.01.004. CrossRefGoogle Scholar
  31. 31.
    Nokia Siemens Networks (2008). Good green business sense—environmentally sustainable business is an opportunity for communication service providers. White paper. Available at http://w3.nokiasiemensnetworks.com/NR/rdonlyres/13368E3E-58C4-4BF7-882F-4FE0F5D4C24F/0/Sustainability.pdf. Accessed 22 January 2012.
  32. 32.
    Nord Pool Spot (2012). Website. Available at http://www.nordpoolspot.com/. Accessed 22 January 2012.
  33. 33.
    Richter, F., Fehske, A. J., & Fettweis, G. P. (2009). Energy efficiency aspects of base station deployment strategies for cellular networks. In IEEE 70th vehicular technology conference, fall, 20–23 September (pp. 1–5). Google Scholar
  34. 34.
    Richter, F., & Fettweis, G. (2010). Cellular mobile network densification utilizing micro base stations. In IEEE international conference on communications (ICC), 23–27 May (pp. 1–6). Google Scholar
  35. 35.
    Richter, F., Fehske, A. J., Marsch, P., & Fettweis, G. P. (2010). Traffic demand and energy efficiency in heterogeneous cellular mobile radio networks. In IEEE 71st vehicular technology conference, spring, 16–19 May (pp. 1–6). Google Scholar
  36. 36.
    Tao, C., Yang, Y., Honggang, Z., Haesik, K., & Horneman, K. (2011). Network energy saving technologies for green wireless access networks. IEEE Wireless Communications, 18(5), 30–38. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Communications and NetworkingAalto University School of Electrical EngineeringAaltoFinland

Personalised recommendations