Telecommunication Systems

, Volume 56, Issue 4, pp 455–466 | Cite as

A bit error rate analysis for TCP traffic over parallel free space photonics

  • Enrique Rodriguez-Colina
  • Diego Gil-Leyva
  • Jose L. Marzo
  • Víctor M. Ramos R.
Article

Abstract

Inter-satellite links (ISL) are a useful technology to transmit data to space stations and to communicate between satellites. However, there are serious limitations due to long delays and poor channel performance, resulting in high bit error rates (BER). In this paper, parallel transmission and the scaling of the Transport Control Protocol (TCP) window in free space optics (FSO) communications are analyzed in order to overcome these disadvantages in optical inter-satellite links. Latency and BER are the dominant effects that determine link performance. Thus, a physical, link, network and transport cross-layer analysis for FSO over ISL is presented in this paper. This analysis shows the advantages and disadvantages of using optical parallel transmission and TCP window scaling for free space optical links between stations and satellite constellations. The key contribution of this work is to simulate the effects of the BER and to link the results to packet error rate (PER) to determine the goodput for TCP transmissions by using a cross-layering approach. The results give evidence that wavelength division multiplexing (WDM) can mitigate the effects of long delay and high BER for a FSO communication using TCP.

Keywords

Free space optics (FSO) TCP window scale option (WSO) Long fat pipes Bit error rate (BER) Packet error rate (PER) 

References

  1. 1.
    Akan, O. B., Fang, J., & Akyildiz, I. F. (2002). Performance of TCP protocols in deep space communication networks. IEEE Communications Letters, 6(11), 478–480. CrossRefGoogle Scholar
  2. 2.
    Akyildiz, I. F., & Jeong, S. H. (1997). Satellite ATM networks: a survey. IEEE Communications Magazine, 35(7), 30–43. CrossRefGoogle Scholar
  3. 3.
    Akyildiz, I. F., Morabito, G., & Palazzo, S. (2001). TCP-Peach: a new congestion control scheme for satellite IP networks. IEEE/ACM Transactions on Networking, 9(3), 307–321. CrossRefGoogle Scholar
  4. 4.
    Akyildiz, I. F., Zhang, X., & Fang, J. (2002). TCP-Peach+: enhancement of TCP-Peach for satellite IP networks. IEEE Communications Letters, 6(7), 303–305. CrossRefGoogle Scholar
  5. 5.
    Allman, M., Kruse, H., & Ostermann, S. (1996). An application level solution to TCP’s satellite inefficiencies. In International workshop on satellite-based information services (WOSBIS) (pp. 100–107). Google Scholar
  6. 6.
    Allman, M., Paxson, V., & Stevens, W. (1999). RFC 2581: TCP congestion control. http://www.ietf.org/rfc/rfc2581.txt.
  7. 7.
    Allman, M., Dawkins, S., Glover, D., Griner, J., Tran, D., Henderson, T., Heidemann, J., Touch, J., Kruse, H., Ostermann, S., Scott, K., & Semke, J. (2000). RFC 2760: Ongoing TCP research related to satellites. http://www.ietf.org/rfc/rfc2760.txt.
  8. 8.
    Begley, D. L. (2000). Laser cross-link systems and technology free space laser communications. IEEE Communications Magazine, 38(8), 126–132. CrossRefGoogle Scholar
  9. 9.
    Boudreau, P. E., Bergman, W. C., & Irvin, D. R. (1994). Performance of a cyclic redundancy check and its interaction with a data scrambler. IBM Journal of Research and Development, 38(6), 651–658. CrossRefGoogle Scholar
  10. 10.
    Brackett, C. A. (1990). Dense wavelength division multiplexing networks: principles and applications. IEEE Journal on Selected Areas in Communications, 8(6), 948–964. CrossRefGoogle Scholar
  11. 11.
    Clarke, A. C. (1945). Extra-terrestrial relays. Wireless World, 305–308. Google Scholar
  12. 12.
    College, D. (2007). SSFNet: Scalable Simulation Framework (SSFNET). http://www.ssfnet.org.
  13. 13.
    De-Souza, E., & Agarwal, D. (2003). A high speed TCP study: characteristics and deployment issues (Tech. rep.). Lawrence Berkeley National Laboratory, technical Report LBNL-53215. Google Scholar
  14. 14.
    Dong, W., Wang, J., Huang, M., Tang, J., & Zhou, H. (2011). ATCS: an adaptive TCP coding scheme for satellite IP networks. KSII Transactions on Internet and Information Systems, 5(5), 1013–1027. CrossRefGoogle Scholar
  15. 15.
    Dowd, P. W., & Sivalingam, K. M. (1994). A multi-level WDM access protocol for an optically interconnected parallel computer. In IEEE international conference on computer communications (INFOCOM) (pp. 400–408). Google Scholar
  16. 16.
    Fausto, F. V., Shintre, S., & Barros, J. (2010). How feasible is network coding in current satellite systems? In Proceedings of the 5th advanced satellite multimedia systems conference and the 11th signal processing for space communications workshop (pp. 31–37). Google Scholar
  17. 17.
    Floyd, S. (2003). RFC 3649: High Speed TCP for large-scale congestion windows. http://www.ietf.org/rfc/rfc3649.txt.
  18. 18.
    Gavish, B. (1997). LEO/MEO systems—global mobile communication systems. Telecommunications Systems, 8(2), 99–141. CrossRefGoogle Scholar
  19. 19.
    Giambene, G., & Miorandi, D. (2005). A simulation study of scalable TCP and highspeed TCP in geostationary satellite networks. Telecommunications Systems, 30(4), 297–320. CrossRefGoogle Scholar
  20. 20.
    Hasegawa, G., Murata, M., & Miyahara, H. (2000). Fairness and stability of congestion control mechanisms of TCP. Telecommunications Systems, 15(1), 167–184. CrossRefGoogle Scholar
  21. 21.
    Hellal, O. A., & Altman, E. (2000). Analysis of TCP vegas and TCP reno. Telecommunications Systems, 15(3), 381–404. CrossRefGoogle Scholar
  22. 22.
    Hemmati, H. (2008). Free-space optical communications at JPL/NASA (Tech. rep.). Jet Propulsion Laboratory, California Institute of Technology, optical Communications Group. Google Scholar
  23. 23.
    Jacobson, V. (1988). Congestion avoidance and control. Computer Communication Review, 18(4), 314–329. CrossRefGoogle Scholar
  24. 24.
    Jacobson, V. (1990). Modified TCP congestion control and avoidance algorithms. End2end-interest mailing list. Google Scholar
  25. 25.
    Jacobson, V., Braden, R., & Borman, D. (1992). RFC 1323: TCP extensions for high performance. http://www.ietf.org/rfc/rfc1323.txt.
  26. 26.
    James, L., Moore, A. W., Wonfor, A., Plumb, R., White, I., & Penty, R. (2005). Packet error rate and bit error rate non-deterministic relationship in optical network applications. In Optical fiber communication conference, 2005. Technical digest. OFC/NFOEC (Vol. 4, p. 3). Google Scholar
  27. 27.
    James, L. B. (2005). Error behaviour in optical networks. PhD thesis, University of Cambridge. Google Scholar
  28. 28.
    Katti, S., Rahul, H., Hu, W., Katabi, D., Muriel, M. M., & Crowcroft, J. (2006). XORs in the air: practical wireless network coding. Computer Communication Review, 36(4), 243–254. CrossRefGoogle Scholar
  29. 29.
    Keiser, G. (2000). Optical fiber communications (3rd ed.). New York: McGraw Hill. Google Scholar
  30. 30.
    Kimura, K., Inagaki, K., & Karasawa, Y. (1997). Double-layered inclined orbit constellation for advanced satellite communication network. IEICE Transactions on Communications, E80-B(1), 93–102. Google Scholar
  31. 31.
    Lakshman, T. V., & Madhow, U. (1997). The performance of TCP/IP for networks with high bandwidth-delay products and random loss. IEEE/ACM Transactions on Networking, 5(3), 336–350. CrossRefGoogle Scholar
  32. 32.
    Li, H., Zhang, Q., Zhang, N., Zhang, Y., & Xu, H. (2006). Adaptive routing strategy in multi-layer satellite communication networks. In Proceedings of the 7th international symposium on antennas propagation & EM theory (ISAPE) (pp. 1–4). Google Scholar
  33. 33.
    Manchester, J., Anderson, J., Doshi, B., & Dravida, S. (1998). IP over SONET. IEEE Communications Magazine, 36(5), 136–142. CrossRefGoogle Scholar
  34. 34.
    Moore, A. W., James, L. B., Glick, M., Wonfor, A., Plumb, R. G., White, I. H., McAuley, D., & Penty, R. V. (2005). Optical network packet error rate due to physical layer coding. Journal of Lightwave Technology, 23(10), 3056–3065. CrossRefGoogle Scholar
  35. 35.
    Moore, A. W., James, L. B., Wonfor, A., White, I. H., Penty, R. V., Glick, M., & McAuley, D. (2005). Chasing errors through the network stack: a testbed for investigating errors in real traffic on optical networks. IEEE Communications Magazine, 43(8), s34–s39. CrossRefGoogle Scholar
  36. 36.
    Oueslati-Boulahia, S., Serhrouchni, A., Tohmé, S., Baier, S., & Berrada, M. (2000). TCP over satellite links: problems and solutions. Telecommunications Systems, 13(2), 199–212. CrossRefGoogle Scholar
  37. 37.
    Raahemi, B. (2005). Error correction on 64/66 bit encoded links. In IEEE Canadian conference on electrical and computer engineering (pp. 412–416). Google Scholar
  38. 38.
    Rahmani, R., Kanter, T., & Åhlund, C. (2010). A self configuring fuzzy active queue management controller in heterogeneous networks. In 17th international conference on telecommunications (pp. 634–641). Google Scholar
  39. 39.
    Ramaswami, R., & Sirvarajan, K. N. (2001). Morgan Kaufmann series in networking. Optical networks: a practical perspective (2nd ed.). San Mateo: Morgan Kaufman. Google Scholar
  40. 40.
    Rodríguez-Colina, E., James, L. B., Penty, R. V., White, I. H., Williams, KA, & WMoore, A. (2006). TCP sending rate control at terabits per second. In Proceedings of the 25th IEEE international conference on computer communications (INFOCOM), Barcelona, Spain (pp. 1–5). Google Scholar
  41. 41.
    Satcom (2006). Optical communications and intersatellite links. WTEC Hyper-Librarian. Google Scholar
  42. 42.
    Shlomi, A., Rotman, S. R., & Kopeika, N. S. (1998). Performance limitations of a free-space optical communication satellite network owing to vibrations: heterodyne detection. Applied Optics, 37(27), 6366–6374. CrossRefGoogle Scholar
  43. 43.
    Taleb, T., Mashimo, D., Jamalipour, A., Kato, N., & Nemoto, Y. (2009). Explicit load balancing technique for NGEO satellite IP networks with on-board processing capabilities. IEEE/ACM Transactions on Networking, 17(1), 281–293. CrossRefGoogle Scholar
  44. 44.
    Tirró, S. (1993). Satellite communication systems design. New York: Plenum Press. CrossRefGoogle Scholar
  45. 45.
    Vieira, F., & Barros, J. (2009). Network coding multicast in satellite networks. In Proceedings of the 5th Euro-NGI conference on next generation Internet networks, Piscataway, NJ, USA (pp. 18–23). New York: IEEE Press. Google Scholar
  46. 46.
    Wong, E., & Yum, T. (1997). Delay bounds for packet satellite protocols. Telecommunications Systems, 8(2), 277–291. CrossRefGoogle Scholar
  47. 47.
    Wood, L. (2001). Internetworking with satellite constellations. PhD thesis, School of Electronics, Computing and Mathematics, University of Surrey, Centre for Communications Systems Research, United Kingdom. Google Scholar
  48. 48.
    Zabir, S. M. S., & Kitagata, G. (2004). A proposal for efficient TCP flow control over satellite networks. Telecommunications Systems, 25(3), 371–400. CrossRefGoogle Scholar
  49. 49.
    Zimmermann, H. (1980). OSI reference model—the ISO model of architecture for open systems interconnection. IEEE Transactions on Communications, 28(4), 425–432. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Enrique Rodriguez-Colina
    • 1
  • Diego Gil-Leyva
    • 2
  • Jose L. Marzo
    • 3
  • Víctor M. Ramos R.
    • 1
  1. 1.UAM-IztapalapaMéxico CityMexico
  2. 2.Sener Ingeniería y SistemasSevero Ochoa 4—Parque Tecnológico de MadridTres Cantos, MadridSpain
  3. 3.University of GironaGironaSpain

Personalised recommendations